
19

Puppeteer: A Random Forest Based Manager for Hardware

Prefetchers Across the Memory Hierarchy

FURKAN ERIS, MARCIA LOUIS, and KUBRA ERIS, Boston University

JOSÉ ABELLÁN, Universidad Católica de Murcia

AJAY JOSHI, Boston University

Over the years, processor throughput has steadily increased. However, the memory throughput has not in-
creased at the same rate, which has led to the memory wall problem in turn increasing the gap between
effective and theoretical peak processor performance. To cope with this, there has been an abundance of
work in the area of data/instruction prefetcher designs. Broadly, prefetchers predict future data/instruction
address accesses and proactively fetch data/instructions in the memory hierarchy with the goal of lowering
data/instruction access latency. To this end, one or more prefetchers are deployed at each level of the memory
hierarchy, but typically, each prefetcher gets designed in isolation without comprehensively accounting for
other prefetchers in the system. As a result, individual prefetchers do not always complement each other,
and that leads to lower average performance gains and/or many negative outliers. In this work, we propose
Puppeteer, which is a hardware prefetcher manager that uses a suite of random forest regressors to determine
at runtime which prefetcher should be ON at each level in the memory hierarchy, such that the prefetchers
complement each other and we reduce the data/instruction access latency. Compared to a design with no
prefetchers, using Puppeteer we improve IPC by 46.0% in 1 one-core, 25.8% in four-core, and 11.9% in eight-
core processors on average across traces generated from SPEC2017, SPEC2006, and Cloud suites with ∼11-KB
overhead. Moreover, we also reduce the number of negative outliers by more than 89%, and the performance
loss of the worst-case negative outlier from 25% to only 5% compared to the state of the art.

CCS Concepts: • Computing methodologies→ Classification and regression trees; Ensemble meth-

ods; • General and reference→ Performance; • Computer systems organization→ Architectures;

Additional Key Words and Phrases: Prefetching, runtime management, machine learning

ACM Reference format:

Furkan Eris, Marcia Louis, Kubra Eris, José Abellán, and Ajay Joshi. 2022. Puppeteer: A Random Forest Based
Manager for Hardware Prefetchers Across the Memory Hierarchy. ACM Trans. Arch. Code Optim. 20, 1, Arti-
cle 19 (December 2022), 25 pages.
https://doi.org/10.1145/3570304

This work was supported by project grant PID2020-112827GB-I00 funded by MCIN/AEI/10.13039/501100011033.
Authors’ addresses: F. Eris, S. Louis, K. Eris, and A. Joshi, ECE, Boston University, 340, 8 St. Mary’s Street, Boston, MA 02215;
emails: {fe, marcia93, kubra, joshi}@bu.edu; J. Abellán, CS, Universidad Católica de Murcia, Campus de Los Jerónimos, Av.
de los Jerónimos, 135, Guadalupe, Murcia, Spain, 30107; email: jlabellan@ucam.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
1544-3566/2022/12-ART19 $15.00
https://doi.org/10.1145/3570304

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 1, Article 19. Publication date: December 2022.

https://orcid.org/0000-0002-0349-6959
https://orcid.org/0000-0001-7749-5396
https://orcid.org/0000-0003-4325-7060
https://orcid.org/0000-0003-3550-720X
https://orcid.org/0000-0002-3256-9942
https://doi.org/10.1145/3570304
mailto:permissions@acm.org
https://doi.org/10.1145/3570304
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3570304&domain=pdf&date_stamp=2022-12-16

19:2 F. Eris et al.

1 INTRODUCTION

Instruction and data prefetching [18] are commonly used in today’s processors to overcome the
memory wall problem [70]. The key idea behind prefetching is identifying the current memory
access pattern and predicting addresses to proactively fetch instructions and data into the cache
to avoid cache misses.1 Prefetching hides the large memory access latency and, in turn, improves
processor performance. As a result, modern processors employ multiple prefetchers to cover a
wide range of applications. Consequently, existing prefetchers do not improve the performance
of all applications; in some cases they hurt application performance by prefetching the wrong
memory addresses [36]. These incorrect prefetches use up the precious memory bandwidth and
the limited space in the cache hierarchy. This increases data and instruction access latency, which
hurts application performance.

To evaluate a prefetcher’s performance, we can use scope and accuracy as the metrics
[6, 34]. A prefetcher with high prefetching accuracy usually has limited scope—that is, it is very
good at identifying a limited number of memory access patterns and can accurately prefetch
data/instructions if those specific memory access patterns exist. However, such a prefetcher fails
to identify other memory access patterns. Conversely, a prefetcher with broad scope caters to a
wide variety of memory access patterns, but it has low accuracy.

Effectively, we need to find a balance between the accuracy and scope of the prefetcher. One
way to balance scope and accuracy is to use multiple high accuracy prefetchers at each level of the
memory hierarchy, as is the case in AMD and Intel processors [1–3, 7, 21–27, 65]. Each prefetcher
is customized to identify a specific type of memory access pattern and make a prefetching
prediction. However, having multiple prefetchers operating at each level in the memory hierarchy
can lead to the following issues:

• Given that each prefetcher is trained independently to track a specific type of traffic and
simultaneously share microarchitectural resources, prefetchers can sabotage each other dur-
ing runtime. A prefetcher may trigger prefetch requests that evict cache lines that another
prefetcher has accurately prefetched. This behavior leads to a loss in performance, wasted
memory access bandwidth, and increased power consumption.
• Different prefetchers (either at the same level or across levels in the memory hierarchy)

latch onto memory access patterns at different speeds. So a prefetcher’s prediction can be
influenced by the traffic generated by other prefetchers. These differences in temporal be-
havior can cause faulty synchronization among prefetchers and lead to a drop in application
performance.

Essentially, prefetchers compete for resources and, at times, sabotage each other. To validate
our argument, we use traces2 generated from SPEC2017, SPEC2006, and Cloud benchmark suites
and run these traces on an OoO processor that uses a different prefetcher at each level of the
memory hierarchy (details of the particular evaluation methodology are provided in Section 4).
We execute these traces using two state-of-the-art prefetcher solutions, IPCP [45] and EIP [55],
which were the winners of prior prefetching competitions [49–51]. These prefetcher solutions use
different prefetchers at each level of the memory hierarchy—that is, different prefetcher system

1This is a new article, not an extension of a conference paper.
2A trace is a group of instructions that represent a specific behavior. One or more traces can be used to represent the
behavior of a benchmark. For example, a benchmark with consistent looping behavior can be represented by one trace cor-
responding to a single iteration of the loop. One or more unique representative traces are generated from each benchmark
[48].

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 1, Article 19. Publication date: December 2022.

Puppeteer: A Random Forest Based Manager for Hardware Prefetchers Across 19:3

Fig. 1. Motivational example. Performance of a processor when using IPCP and EIP prefetchers. Here we
show the 20 traces with the highest difference in performance out of 232 traces that we evaluated.

configurations (PSCs).3 Both prefetcher solutions improve performance compared to the no
prefetching case. However, IPCP (no-ipcp-ipcp-nl) (further details on the types of prefetchers are
given later in Table 5) shows better performance over EIP in 100 out of 232 traces with the largest
performance gain of 56% in 602.gcc_s-2226B. EIP (EIP-nl-spp-no) shows better performance over
IPCP in the remaining 132 traces and has the largest performance gain of 89% in server_036.

In Figure 1, we show a subset of traces that have a significant difference in their IPC when using
IPCP and EIP prefetcher solutions. The standard methodology would have us select EIP because
it has on average 7.8% performance gain over IPCP, but that would come at the cost of having a
performance loss for 100 out of the 232 traces.

One way to address this problem is to have multiple different prefetchers at each cache level
and switch ON a prefetcher based on the current program phase. For example, one prior work
that has attempted to leverage multiple prefetchers in the same level of the memory hierarchy is
by Kondugli and Huang [34]. The authors propose a “composite prefetcher,”which uses a priority
queue as the control algorithm to select a prefetcher at a single level in the memory hierarchy. Al-
though this approach provides benefits, the composite prefetcher priority queue is designed offline
for a given set of applications. For previously unseen applications, we will not necessarily see any
performance improvement. Furthermore, the control algorithm will not scale well as we increase
the number of prefetchers in the system and target different levels in the memory hierarchy.

What is really needed is a manager that can successfully manage multiple prefetchers at each
level in the memory hierarchy and has a low overhead. This manager will choose the PSC that
is suitable for the current phase of an application. The chosen PSC should have prefetchers that
complement each other for the current phase, reduce memory access overhead, and, in turn, im-
prove application performance. Given that multiple prefetchers are available at each level in the
memory hierarchy, this “manager” will effectively determine which prefetcher should be ON/OFF
at each level in the memory hierarchy, both across different phases of an application and across ap-
plications. In this article, we propose a machine learning (ML)-based hardware manager called
Puppeteer that selects the PSC at runtime. Contrary to the prior work [37, 52, 71] that focuses on
training the ML model to improve the prefetch address prediction accuracy of the ML model, we
train the ML model of Puppeteer to increase the overall system performance (quantified as IPC). Us-
ing our unique training strategy, we are able to specifically target training for application phases
where the swing in IPC is much higher than in other regions. Thereby, we tailor Puppeteer for

3A PSC specifies which prefetcher is switched ON at each level of the memory in the system. We denote a PSC using the
following format <prefetcher-in-L1I$>-<prefetcher-in-L1D$>-<prefetcher-in-L2$>-<prefetcher-in-LLC$>.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 1, Article 19. Publication date: December 2022.

19:4 F. Eris et al.

these phases and achieve high targeted-application-phase accuracy instead of just high overall
model prediction accuracy.

To manage the prefetchers across multiple cache levels at runtime, we propose a multi-
regression ML-based approach. We use the observed IPC of the various PSCs for different phases
of each application to train our ML model. We train a unique random forest regressor per PSC
(in our case, we have 5 different PSCs, which we pruned down from the 300 possible PSCs—more
details about this are provided in Section 4), to create a suite of random forests regressors. For
features used in the ML model, we use events that can be tracked using hardware performance

counters (HPCs) and whose behavior does not change with the choice of PSC (i.e., PSC-invariant
events). An example of such an event is the number of branch instructions in an application. The
branch instruction count does not change with the choice of PSC. Using only PSC-invariant events,
we can limit the number of executions per trace we must account for during training, making it
easier to train the ML model in Puppeteer (more details about the training approach are presented
in Section 3.3). In summary, the contributions of our work are as follows:

• We propose a novel ML-based runtime hardware manager called Puppeteer to manage the
various prefetchers across the memory hierarchy to improve processor performance.
• We design Puppeteer to use a set of PSC-invariant events (which can be tracked using HPCs)

as inputs and predict the PSC for the next instruction window.4 We co-optimize the hardware
design and the ML model of Puppeteer with the goal of maximizing the overall application
performance while minimizing the area overhead. At runtime, at the end of an instruction
window, Puppeteer predicts the IPC for each PSC and selects the PSC with the highest pre-
dicted IPC for the succeeding instruction window.
• We train Puppeteer to maximize processor performance instead of the prefetch address pre-

diction accuracy. We use only 20% of the data for training to prevent overfitting and design
Puppeteer with a low hardware overhead (∼11 KB). For the 232 traces we experiment with,
Puppeteer achieves an average performance gain of 46.0% in one core (1C), 25.8% in four

core (4C), and 11.9% in eight core (8C) processors on average compared to a system with
no prefetching. Moreover, we ensure that Puppeteer reduces negative outliers. When using
Puppeteer, we observe an 89% reduction in the number of outliers, down to 8 outliers from 53,
and a 20% reduction in the IPC loss of the worst-case outlier compared to the state-of-the-art
prior prefetcher managers.
• Finally, to the best of our knowledge, Puppeteer is the only manager that targets all cache

levels in the memory hierarchy.

2 BACKGROUND AND RELATED WORK

2.1 Heuristic-Based Prefetcher Managers

When a processor executes an application, there is a diverse set of interactions among the com-
pute, memory, and communication components of a computing system. These interactions are
dependent on the processor (micro)architecture and the application, thus effectively making the
processor a big finite state machine with an extremely large state space. This makes it difficult
to use deterministic techniques, which consider all possible states, for hardware management. As
a result, over the past 20 to 30 years, heuristic algorithms have been used for hardware manage-
ment, including for prefetcher management such as static priority queue-based approaches [34, 54]

4An instruction window is group of instructions that are executed sequentially at runtime. We experimented with different
instruction window sizes and did not see a large change in the performance of Puppeteer. We set the size to 100,000
instructions.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 1, Article 19. Publication date: December 2022.

Puppeteer: A Random Forest Based Manager for Hardware Prefetchers Across 19:5

Table 1. Overview of the Related Work on Prefetcher Managers

Work
#

Pf
Cache Levels

Managed
IPC Gain over Baseline

PSC
IPC Gain over

No Prefetching
Heuristic or

ML
Overhead

[54] 1 1 Only reports accuracy Heuristic Software
[34] 1 1 5% 41% Heuristic ∼4.6KB
[29] 1 1 7.8% (6% from 1 application) NA Heuristic Software
[31] 0 1 11% No Pf baseline Heuristic Software
[37] 4 2 Only reports ML accuracy ML Software
[52] 1 2 Only reports ML accuracy ML Software
[6] 1 1 Pf targets 2 levels 2.27% 15.24% ML ∼39 KB
[24] 4 1 –1% to 3.6% –1% to 8.5% ML Software
[39] 1 1 –5% to 1% 23% ML Software
[28] 8 3 –1% ∼10% ML 171.8 KB

Puppeteer 7 All (4) 14.7% 46% ML ∼11 KB

We use NA when the paper lacks information about the respective metric. In the last column, “software” indicates the
software prefetcher. For IPC gains, we report average IPC gain in 1C.

and rule-based prefetcher throttling approaches [14–17, 23, 25, 38, 62]. These algorithms have low
memory/area overhead and improve processor performance for the average case. However, with
the ever-increasing complexity of processors and the diversity of applications, heuristic algorithms
are no longer effective. Heuristic algorithms are extremely dependent on the hardware/operating
conditions and cannot easily adapt to variations at runtime.

2.2 ML-Based Prefetcher Managers

ML methods have been gaining traction in place of heuristic methods for achieving superior
prefetcher management performance [6, 24, 28, 29, 37, 39]. ML algorithms can extract the non-
intuitive interactions between the different prefetchers. Prior methods on prefetcher management
configure or train the manager, which typically predicts which PSC to use for a given applica-
tion, using values of hardware events collected for a single fixed PSC (generally, the default PSC)
[6, 29, 37, 52]. Using an ML model trained using only a single fixed PSC would make sense if the
prefetcher system always uses that single fixed PSC at runtime. However, at runtime, the PSC
changes. If the values of the hardware events are highly dependent on which PSC is being used,
using a dataset generated using a fixed PSC for training leads to a low-accuracy ML model for the
prefetcher adaptation. To address this concern, we train our ML model using PSC-invariant hard-
ware events (i.e., events that are not dependent on the PSC, e.g., the number of branch instructions).

We observe a wide variation in the complexity of the ML algorithms used in prior work. We list
the prior work in Table 1. Some of the algorithms are simple and either use small datasets or use
datasets that do not accurately portray the runtime environment as they use PSC-variant events
and only train data of one fixed PSC. As a result, these algorithms cannot achieve good accuracy
at runtime [29, 37, 52]. Other algorithms, such as neural networks, are too complex and their size
increases prohibitively with the size of the dataset [6, 28]. Moreover, some prior works focus on
hardware adaptation only from the perspective of accuracy without worrying about the hardware
implementation [24, 29, 37, 52].

Contrary to the prior work, we jointly account for accuracy of the ML model and hardware
overhead when designing Puppeteer. Puppeteer is complex enough to provide good accuracy on a
wide variety of applications. At the same time, Puppeteer is not too complex (as demonstrated in
Section 3.4) to be implemented in hardware and scales well with the size/complexity of the dataset.
Furthermore, Puppeteer is agnostic of the underlying internal mechanics of the prefetchers and
can be easily retrained for a new prefetcher that is introduced in a new system. In addition, to
the best of our knowledge, Puppeteer is the only manager that targets all cache levels in the
memory hierarchy.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 1, Article 19. Publication date: December 2022.

19:6 F. Eris et al.

2.3 Overview of Existing Prefetchers

The focus of our work is on a prefetcher manager, and our manager can work with any type
of prefetcher. Broadly, we can split prefetching techniques into several categories. We can have
regular-pattern-based (i.e., stride-based prefetchers) [30, 68], irregular-pattern-based (i.e., stream-
based prefetchers) [9, 61], prefetchers that track both regular and irregular patterns [32, 58], and
region-based prefetchers [20, 66]. A very good comprehensive survey on prefetchers can be found
in Falsafi and Wenisch [18].

ML-based algorithms can be used for predicting the addresses of the instructions/data that
should be prefetched at each cache level in the memory hierarchy. The ML-based solutions in-
clude table-based reinforcement learning [5, 46], linear model-based reinforcement learning [72],
perceptron-based neural networks [19, 47], Markov chain model [41] and LSTM-based neural net-
works [8, 22, 43, 54, 59, 60, 63, 71, 73] to predict memory access patterns. As ML algorithms get more
powerful, and the techniques to compress these algorithms become more sophisticated, ML-based
prefetchers will become commonplace in processors.

3 PUPPETEER DESIGN

3.1 Puppeteer System-Level Overview

In Figure 2, we show the system-level design of an example prefetcher system that uses Puppeteer.
The prefetcher system consists of eight different prefetchers (Pf1–Pf8), which is typical in modern
high performance processors such as Intel i9 [26], AMD Ryzen7 [1, 3], and AMD EPYC [2]. These
eight prefetchers track different memory access patterns and prefetch data from main memory
to last-level cache (LLC), from LLC to L2$, and from L2$ to L1$. Pf1 and Pf2 target instruc-
tion lines to bring into L1I$, Pf3 and Pf4 prefetch data into L1D$, and Pf5 and Pf6 prefetch data
into L2$, whereas Pf7 and Pf8 target data to bring into LLC. These prefetchers compete among
them for cache and memory resources. Even across memory levels, a wrong prefetch request from
lower levels of memory can harm the performance of prefetchers at higher levels of memory.
These prefetchers can sometimes act overly aggressive, and can adversely affect each other, in
turn leading to loss of application performance. There are many heuristics-based algorithms that
use simple inputs such as accuracy5 of the prefetchers or memory bandwidth utilization to throttle
prefetchers in such adverse scenarios [14–17, 23, 25, 62]. These heuristic algorithms are designed
to have low overhead and hence are highly optimized for the prefetchers in a given prefetcher
system.

Puppeteer works as a manager of all prefetchers and complements the heuristic algorithms used
in the given prefetcher system. At runtime, Puppeteer periodically updates the PSC—that is, it sets
which prefetcher should be ON and which should be OFF at each level in the memory hierar-
chy. To update the PSC, Puppeteer uses an ML model with the PSC-invariant hardware events,
collected from HPCs as inputs. Although low-overhead heuristic algorithms are still required to
make extremely low latency decisions at the cycle level, Puppeteer provides additional adaptabil-
ity by leveraging the power of ML and thereby increasing the performance. Effectively, heuristic
algorithms such as throttling are used in the system to constantly regulate the short-term behav-
ior of the prefetchers, whereas Puppeteer controls the longer-term system-level behavior (across
hundreds of thousands of cycles).

5Here, accuracy of a prefetcher is quantified as the fraction of the total prefetches that were actually useful, and is calculated
as #prefetches referenced by the program divided by total #prefetches. Note, this prefetcher accuracy is not the same as
the ML model accuracy. Scope is calculated as total #misses eliminated by the prefetcher divided by the total #misses when
prefetching is disabled.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 1, Article 19. Publication date: December 2022.

Puppeteer: A Random Forest Based Manager for Hardware Prefetchers Across 19:7

Fig. 2. Overview of a Puppeteer-based system. Here, Pf = prefetcher. Acc = Accuracy of the prefetchers. Pf1
and Pf2 target instructions to bring into L1I$, Pf3 and Pf4 prefetch data into L1D$, and Pf5 and Pf6 prefetch
data into L2$, whereas Pf7 and Pf8 target data to prefetch into LLC. The Heuristic-Based Dynamic Control
block is a heuristic algorithm that controls the low-level cycle behavior of the prefetchers. Puppeteer controls
the longer-term behavior. HPC values are fed into Puppeteer as inputs at runtime.

3.2 Puppeteer Algorithm

For the ML-based Puppeteer algorithm, we considered a classification-based approach and a
regression-based approach. The classification-based approach has been used by prior works
because it is relatively easy to train offline and has lower hardware overhead compared to
regression. The regression-based approach has potential for higher performance and has better
tolerance to variability compared to classification during runtime when trained offline.

Classification vs. regression. To train Puppeteer, as a classification problem we created a dataset
using thresholding method similar to prior works [6, 29, 37, 39]. Here, a trace is run using all
available PSCs. A PSC is given a label of “1” if the IPC when using that PSC is within some threshold
(in the case of the prior work, the threshold is 0.5%) of the IPC when using the ideal PSC. Multiple
PSCs can pass the chosen threshold for a given program phase, and we then end up using the
PSC that is predicted as “1” with the highest probability. Otherwise, the PSC receives a label of “0.”
Using such a classification approach leads to sub-optimal results.

As an example, consider that we have four different traces. Let us say that we classify the first
three out of the four traces correctly and the fourth one incorrectly—that is, we are able to identify
the correct PSC for the first three traces but not the fourth trace. So, our classification accuracy
is 75%. This means that the first three traces will have performance that is within 0.5% of their
“ideal”performance. However, the performance of the fourth trace could be 100% worse or just
0.51% worse than the ideal performance. This variation in the performance is not accounted in
the classification-based model. Furthermore, this problem is not unique to the given example. Any
classification-based method would have a similar issue because all labeling methods used to create
the dataset for the classification algorithm will certainly lose some amount of information.

In contrast, a regression-based approach accounts for the value of IPC gain/loss, and not just if
there is IPC gain/loss, when deciding the PSC. Given that the regression algorithm is trained on
the IPC values directly, the quantitative information of IPC gain/loss is not lost, and the regression
algorithm can learn the magnitude of a good or bad prediction. In particular, the regression algo-
rithm will be used to predict an IPC value for each PSC for a given instruction window. Then, we
choose the PSC with the highest predicted IPC value.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 1, Article 19. Publication date: December 2022.

19:8 F. Eris et al.

Fig. 3. Algorithm options. A decision tree for a singular classifier, a random forest for singular regressor, a
suite of decision trees for a suite of classifiers, and a suite of random forest regressors for a suite of regressors
(i.e., Puppeteer).

Suite of regressors vs. single regressor. When using regression algorithms, we have two options:
(i) use a single regressor, where all data collected from all PSCs are used to train that single regres-
sor, or (ii) use a suite of regressors, where each PSC will have a dedicated regressor. Using a suite
of regressors leads to a more customized solution that has higher accuracy as compared to using
a single regressor. Conceptually, this is because in a single regressor, we maximize the accuracy
across all PSCs instead of maximizing the accuracy of each PSC separately, whereas in a suite of
regressors, we train a dedicated regressor for each PSC. In this way, we indirectly jointly increase
the scope and accuracy of the overall prefetching system.

In our work, we use a suite of regressors where we implement each regressor using random
forest (i.e., one random forest trained per PSC) due to its simple implementation, its robustness to
noise in the dataset, its lower overhead (compared to other ML algorithms e.g. neural networks),
its resilance to overfitting, and its higher accuracy (compared to other ML algorithms e.g. decision
trees) [35, 44, 53].

We have multiple trees per forest, and we allow each tree to split at locations that are unique
to the PSC associated with the forest. The leaves of each tree in the forest specify the predicted
IPC value for the PSC. For each forest (i.e., each PSC), we calculate the average of the predicted
IPC values obtained from all trees in the forest, then choose the PSC with the highest average
predicted IPC. Given that each forest has multiple decision trees, our method has higher tolerance
to wrong decisions by the trees, where even if some of the trees give wrong decisions, other trees
can compensate.

In Figure 3, we conceptually show the differences between the four different options discussed
earlier: (a) single classifier, (b) single regressor (c) a suite of classifiers, and (d) a suite of regressors.
Respectively, the leaf nodes in (a) contain the PSC choice directly, (b) have the predicted highest
IPC among all the PSCs, (c) the probability value of a given instruction window belonging to the
given PSC (of which we choose the highest one), and (d) the predicted IPC value for a given PSC
that will be averaged per tree in a given RF and compared with the other averaged predicted PSC
values from the other RFs (of which we will choose the highest). For (a) and (b), the PSCs are
traversed simultaneously, since the PSCs share a single algorithm, whereas for (c) and (d), each
PSC has a unique algorithm we traverse.

3.3 Puppeteer Training

To train Puppeteer, we need to generate a representative dataset. Consider the case where we
have a single prefetcher, P f , at only one level in the memory hierarchy. Here, the number of PSCs
(Npsc) = 2 (i.e., P f = OFF and P f = ON). For two consecutive instruction windows, we will have
N 2

psc = 4 possible scenarios: (i) P f = OFF→ P f = OFF, (ii) P f = ON→ P f = OFF, (iii) P f = OFF
→ P f = ON, and (iv) P f = ON→ P f = ON. With N number of instruction windows and Ntr ace

number of traces, the number of different possible scenarios will then be Ntr ace ×N N
psc . When N in-

creases, the number of different scenarios will increase exponentially, hence including each unique

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 1, Article 19. Publication date: December 2022.

Puppeteer: A Random Forest Based Manager for Hardware Prefetchers Across 19:9

scenario in the dataset for training is not feasible. To handle this problem, we propose to use only
PSC-invariant events as our features. An example of a PSC-invariant event is the number of condi-
tional branches, which is not affected by the choice of PSC. We check the variance of each hardware
event value (for 180 total hardware events that we can track) for each PSC. We identify 59 events
whose values vary by less than ±10% from their mean value across all PSCs. We further reduce the
number of events by eliminating the redundant events that track similar behavior and have high
correlation with each other. Table 2 shows the final six events we choose to track trace behavior.
After we have identified our PSC-invariant events that will be the features and the PSCs that will
be the choices of our ML model, we collect an IPC value per PSC for each instruction window as
our ground truth.

Using the features and IPC values we have collected, we then form our suite of random for-
est regressors wherein we train a separate forest for each PSC using CART (classification and
regression trees) [64]. CART is a greedy recursive search algorithm that maximizes information
by splitting the data at each node using one feature. Each child node is split recursively until there
is no information gain from splitting a child node. We limit the total number of decision nodes in
Puppeteer to keep the size of Puppeteer smaller than L1$. With this limitation in mind, we conduct
a hyper-parameter search and determine that the number of estimators (trees per random forest)
should be 5 and the number of max nodes should be 100 per tree.

3.4 Puppeteer Microarchitecture Design

Figure 4 shows the microarchitecture details of Puppeteer. We use a single-port SRAM array
called Node MEM to store information about the nodes that form the trees of each random forest
in Puppeteer. We train Puppeteer offline on a group of applications of interest. After the training
is complete, we load the random forest based ML model of Puppeteer into the Node MEM at
startup using firmware. If the processor unexpectedly executes a completely different set of
applications than those already considered, the ML model might need to be retrained by including
these new applications. This retraining process is performed offline, and the model is reloaded
using firmware. As more and more applications are included, we will need to retrain the ML
model less often. Each entry of Node MEM corresponds to one node in one of the random forests,
and it consists of the following fields. First, it consists of a 3-bit HPC ID field that specifies which
PSC-invariant event (i.e., which HPC) is used by that node to make a decision. The 3-bit encoding
enables the node to use one of six different PSC-invariant events (see Table 2). Second, it consists
of a 16-bit Threshold field (threshold value is determined during training), which is employed by
the node to decide if the decision path should branch left or right. In our problem, 16 bits provide
enough precision for the ML model weight values. Third, it consists of a 12-bit (for 2,250 node
addresses) Left Node Value(LNV) field, and fourth, a 12-bit Right Node Value(RNV) field.
These LNV and RNV fields represent child node indices for internal nodes of a tree. For the leaf
nodes of a tree, we use these LNV and RNV fields to indicate the predicted IPC value of a PSC. We
differentiate between child node index and predicted IPC using, fifth, a 1-bit Type field. We use a
separate 1-bit Type field for LNV and RNV.

At the end of every instruction window, Puppeteer calculates the predicted IPC for each PSC
in the next instruction window by traversing the trees of the associated forest and using the
PSC-invariant event values for the current window as inputs. For each forest, the controller
in Puppeteer reads the Node MEM index of the root node for the first tree from Root Index

Table and loads the Node MEM entry for the root node using a Load Unit into a register. Next,
the HPC ID in the loaded Node MEM entry is used to load the corresponding PSC-invariant
event value into a second register. Then the Threshold value, stored in the first register, and
PSC-invariant event value stored in the second register are compared using the Comparator.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 1, Article 19. Publication date: December 2022.

19:10 F. Eris et al.

Fig. 4. Puppeteer hardware design. Puppeteer is made up of a Node MEM-SRAM array, a max logic unit,
and several register files.

Based on the Comparator output, we choose to traverse down to the left child or the right
child. The Controller then uses the corresponding index value from LNV or RNV to find the
next node in Node MEM. The Controller continues traversing the tree until it loads a predicted
IPC value corresponding to a leaf from the Node MEM. The preceding steps are repeated for
the remaining trees in the forest, then we calculate the average of the predicted IPC values
obtained from all trees in that forest. The Best PSC Unit in the Controller stores the ID of the
PSC with the highest predicted IPC value. Every time the Controller finishes traversing a forest,
the predicted IPC value of that forest (i.e., PSC) is compared with the predicted IPC value stored in
the Best PSC Unit using the Comparator. If the new predicted IPC value is higher than the current
value, the Best PSC Unit updates the predicted IPC value and the ID of the PSC. Once all forests
have been traversed (i.e., all PSCs have been evaluated), Puppeteer chooses the entry stored in
the Best PSC Unit as the PSC for the next instruction window.

We determined that a maximum depth of 10 per tree is more than sufficient to accurately de-
termine the best PSC. In our evaluation, we use a prefetcher system with Npsc = 5 (given later in
Table 6 and discussed in detail in Section 4). We need a total of 2,250 nodes to design the trees
in Puppeteer, and these nodes require a 10.75-KB-sized Node MEM (compared to a typical L1$ of
32 KB). Other than Node MEM, we require a 5 × Npsc -entry Root Index Table where each entry is
13-bit wide (12 bits for the root node index and 1 valid bit), a 12-bit comparator containing com-
parison logic and two registers, a load unit, and a register to store the best PSC information in the
Controller. We discuss the hardware overhead in more detail in Section 5.

4 EVALUATION METHODOLOGY

We use ChampSim [50] for our analysis, where we model 1C, 4C, and 8C processors to have mul-
tiple prefetchers at each level of the cache—private L1I$, L1D$, private L2$, and shared LLC (more
details are provided in Table 2). We train Puppeteer using data collected from a 1C and 4C OoO
processor and then evaluate it on 1C, 4C, and 8C OoO processors. In the 4C and 8C processors, we
have a private Puppeteer per core. Each private Puppeteer utilizes the six PSC-invariant events per
core and makes independent decisions. For our evaluation, we use a diverse set of 232 traces gen-
erated from SPEC2017 [12], SPEC2006 [11], and Cloud [51] benchmarks. Here, a trace is a group of
instructions that represent a specific behavior. For example, a benchmark with consistent looping
behavior can be represented by one trace corresponding to a single iteration of the loop. One or
more unique representative traces are generated from each benchmark using clustering algorithms
[48] to represent the different behaviors of a benchmark. The traces we use for our evaluation were
generated by the organizers of the prior prefetching competitions [49, 51].

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 1, Article 19. Publication date: December 2022.

Puppeteer: A Random Forest Based Manager for Hardware Prefetchers Across 19:11

Table 2. Simulated System Parameters

Component Simulated Parameters

Core One to four cores, 4 GHz, 4-wide, 256-entry ROB
TLBs 64 entries ITLB, 64 entries DTLB, 1,536 entry shared L2 TLB
L1I$ 32 KB, 8-way, 3 cycles, PQ: 8, MSHR: 8, 4 ports
L1D$ 48 KB, 12-way, 5 cycles, PQ: 8, MSHR: 16, 2 ports
L2$ 512 KB, 8-way, 10 cycles, PQ: 16, MSHR: 32, 2 ports
LLC 2 MB/core, 16-way, 20 cycles, PQ: 32×cores, MSHR: 64×cores

DRAM 4 GB 1 channel/1-core, 8 GB 2 channels/multi-core, 1,600 MT/sec

Hardware Event Properties

L1I _PAGES_READ_LOAD L1I$ pages read on load
L1D_PAGES_READ_LOAD L1D$ pages read on load
L1D_RF O_ACCESS L1D$ store accesses
BRAN CH _RET U RN Branch returns
N OT _BRAN CH Not branches
BRAN CH _CO N DIT IO N AL Conditional branches

Table 3. Static PSCs and Managers Evaluated

Algorithm Notation Explanation Static PSC or Manager Training Dataset

NO No prefetching is used; PSC = no-no-no-no Static PSC Not trained
IPCP Winner of DPC3 [49]; PSC = no-ipcp-ipcp-nl Static PSC Not trained
EIP Winner of IPC1 [51]; PSC = EIP-nl-spp-no Static PSC Not trained
PY RL-based algorithm named Pythia [5] ML-based prefetcher Online
J3 Heuristic-based algorithm by Jiménez et al. [29] Manager Not trained

NN Multi-layer perceptron similar to Bhatia et al. [6] Manager 1C
B1C Decision tree algorithm by Liao et al. [37] Manager 1C
B4CS Decision tree algorithm by Liao et al. [37] Manager 4CS
B4CM Decision tree algorithm by Liao et al. [37] Manager 4CM
P1C Puppeteer Manager 1C
P4CS Puppeteer Manager 4CS
P4CM Puppeteer Manager 4CM

Note: We list the static PSCs from the prior prefetching competitions, the manager algorithms from prior
work, and the different flavors of Puppeteer.

In Table 3, we list the notations used for all static PSCs and the runtime managers (that change
PSC at runtime) that we have evaluated. In our evaluation, we normalize all IPC values to the same
state-of-the-art baseline as PPF [6]—that is, SPP [32] (no-no-spp-no). We compare Puppeteer against
the best static PSCs from competitions (i.e., IPCP (no-ipcp-ipcp-nl) and EIP (EIP-nl-spp-no), as well
as managers such as the final version of the algorithm developed by Jiménez et al. [29] that uses
trial periods to latch onto the PSC (J3), Pythia that is an RL-based algorithm developed by Bera
et al. [5] (PY),6 a multi-layer perceptron similar to Bhatia et al. [6] (NN), and a binary-tree (BT)
based algorithm [37], where Liao et al. tried several different ML methods (e.g., decision trees and
NN) and concluded that decision trees are the best choice.

4.1 Training Approaches for ML-Based Prefetcher Managers

When evaluating any new idea, a widely used approach in the industry is to use all available eval-
uation data. We are using a ML-based approach and are cognizant of the fact that we do not want
to overfit our model using all available data for training the ML model. So here we compare three
different approaches for constructing the training dataset for Puppeteer. For training, we have

6Note that Bera et al. used SHiP [69] for their cache replacement policy and perceptron as their branch predictor. We tested
with their settings as well as with using Pythia with hashed-perceptron and least recently used (LRU), and observed on
average that Pythia with hashed-perceptron with LRU has 12% higher IPC. Hence, we use hashed-perceptron and LRU
similar to all other comparison points in this article.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 1, Article 19. Publication date: December 2022.

19:12 F. Eris et al.

Table 4. Dataset Training Approaches

Approach %Benchmarks %Traces %Inst. Win.
Total % of all Inst. Win.

Used for Training

1 ALL ALL 10% 10%
2 ALL 80% 60% 48%
3 80% ALL 60% 51%

Note: Here, %Benchmarks indicates the percentage of benchmarks used during training,
%Traces indicates the percentage of traces from the available benchmarks used during
training, and %Inst.
Win. indicates the percentage of instructions windows from the available traces used during
training. The last columns indicates overall the percentage of instruction windows using
during training.

232 traces ×10,000 instruction windows per trace = 2,320,000 instructions windows. For each ap-
proach, we limit the training data in different ways. Note that we are still training at the instruction
window-level and performing 10-fold cross validation on the training set for all approaches. We
give the percentage of data used to construct each training dataset in Table 4.

In the first approach, we severely limit the data and randomly select 20% of the instruction win-
dows at random time intervals to form the training dataset (i.e., 80% of the instruction windows
are not seen during training). The idea behind this approach is that we are training the algorithm
to recognize low-level memory access behavior. This approach does not overfit the model because
the behavior of the benchmarks when collecting the training data would be different from the
behavior of the benchmarks when we use the trained Puppeteer. This difference is because
when collecting training data we do not change the PSC, whereas when using Puppeteer the
PSC can potentially change for each instruction window. In the second approach, we use 80%
of the traces for testing. We consider all instruction windows of the remaining 20% traces, and
perform a 60–40 split where 60% of the windows are used for training and 40% of the windows
are used for validation. This avoids overfitting. Given that traces are constructed to represent
unique behaviors in each application, our training set will not have traces corresponding to all
of the unique behaviors of a given benchmark. This means that some of the traces from other
benchmarks are assumed to be from the same distribution of these missing traces or else there
will be no way for the algorithm to train for these regions. In the third approach, we generate
the training dataset using 20% of the benchmarks and for those benchmarks we use a 60–40 split
of the instruction windows. The remaining 80% of the benchmarks are used for testing. In this
approach, whole benchmarks are not considered during training. Here, too, we choose a 60–40
split of the instruction windows to avoid overfitting the model to the 20% of benchmarks in the
training set.

In a 1C processor, when using Puppeteer on unseen benchmarks, for the first, second, and third
approaches, we observe an average IPC gain of 11.3%, 9.8%, and 6.6%, respectively, over SPP. In the
second and third approaches, we see that Puppeteer has lower performance gain than the first ap-
proach. Despite having 3% more instruction windows for training in the third approach compared
to the second approach, there is a 3.2% drop in performance. Furthermore, in the first approach,
we use only 10% of the total number of instruction windows for training (5 × less instruction win-
dows than the other approaches), yet this approach performs 1.5% and 4.7% better than the other
two approaches. This implies that the second and third approaches are trained on an insufficient
number of unique memory accesses patterns, leading to lower performance gain. Therefore, for
the rest of our evaluation, we train all ML-based prefetcher managers using the first approach. As
mentioned earlier, Puppeteer can always be retrained and updated via firmware.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 1, Article 19. Publication date: December 2022.

Puppeteer: A Random Forest Based Manager for Hardware Prefetchers Across 19:13

Table 5. Initial Prefetcher Options

L1I$ L1D$ L2$ LLC

No prefetcher No prefetcher No prefetcher No prefetcher
Next-line [18] Next-line Next-line Next-line
FNL+MMA [56] IPCP [45] IPCP
DJOLT [42] MLOP [57] SPP [32]
EIP [55] Bingo [4] KPCP [33]

Ip-Stride [18]

Note: We show the regular and irregular prefetcher options we
used at each cache level to construct our set of 300 PSCs.
We reduce the number of PSCs down to five PSCs before training.

4.2 1C, 4C, and 8C Workload Formulation

We run 1C and 4C experiments using a 200M instruction warmup phase and 1B instruction detailed
simulation phase, whereas for 8C we use a 200M instruction warmup phase and 250M instruction
detailed simulation phase. We generate a total of 232 traces from SPEC2017, SPEC2006, and Cloud
benchmarks. We create two flavors of trace sets for the 4C and 8C experiments: a single-type
trace set where each core runs the same trace, and a mixed-type trace set where each core runs a
unique trace. Therefore, we have five data suites in total: 1C, 4C single-type trace set (4C STS), 4C
mixed-type trace set (4C MTS), 8C single-type trace set (8C STS), and 8C mixed-type trace set (8C
MTS). We use hashed-perceptron for branch predictor and least recently used policy for cache re-
placement policy provided by ChampSim. To construct our mixed-type trace sets, we first split the
232 traces into six groups based on ascending execution latency. Then we randomly select a trace
from a given group per core and construct a mixed-type trace group. We cover all permutations
of the various latency groups. This way, we have diversity in the traces running on the cores. For
example, in a 4C processor, we can assign a trace from group 2 to core0, a trace from group 3 to
core1, a trace from group 4 to core3, and a trace from group 5 to core3. This can be represented as
2 − 3 − 4 − 5. Therefore, we have 360 experiments (six options for core0 × 5 options for core1 × 4
options for core2 × 3 options for core3) in 4C MTS for six latency groups and four selected traces
(one for each core). For 8C MTS, since the number of experiments increases and the experiments
take quite long, we replicate the same latency group for four of the cores. For example, we can
use 1 − 1 − 1 − 1 − 4 − 4 − 4 − 4 for an 8C experiment. However, instead of 6 groups as in the
4C system, we use 10 groups for the 8C system, to cover a more granular variety of behavior and
instead of permutations we use combinations with replacement. Therefore, we have 55 (two traces
selected from 10 latency groups with replacement, i.e., CR (10, 2)) experiments for 10 groups and
two selections. Note that even if the latency group is the same, since we choose a trace randomly
from a latency group, the trace can still be different for each core.

4.3 Generating ML Models and PSC Pruning

To generate the 1C dataset (PSC and associated IPC values), we run the 1C experiments using all
possible PSCs generated from the prefetcher options that are available in the ChampSim reposi-
tory, the first place (IPCP [45]), second place (Bingo [4]), and third place (MLOP [57]) winners of
the Third Data Prefetching Competition (DPC3) [49], and the first place (EIP [55]), second place
(FNL+MMA [56]), and third place (DJOLT [42]) winners of the First Instruction Prefetching Com-
petition (IPC1) [51]. To reduce the hardware overhead of Puppeteer, we avoid including multiple
PSCs that cover the same traces. To this end, we initially ran 20 traces for 20M instructions with
all possible PSCs (5 prefetching options in L1I$ × 5 prefetching options in L1D$ × 6 prefetching
options in L2$ × 2 prefetching options in LLC = 300 PSCs). We summarize the different prefetchers
that we evaluated in Table 5.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 1, Article 19. Publication date: December 2022.

19:14 F. Eris et al.

Table 6. PSCs and Their Prefetching Options Used at Each $ Level

Final PSCs Used L1I$ L1D$ L2$ LLC

djolt-bingo-nl-nl DJOLT [42] Bingo [4] Next-line [18] Next-line
djolt-bingo-no-no DJOLT Bingo No prefetcher No prefetcher
fnl-bingo-spp-nl FNL+MMA [56] Bingo SPP [32] Next-line
fnl-bingo-spp-no FNL+MMA Bingo SPP No prefetcher
no-nl-spp-no No prefetcher Next-line SPP No prefetcher
Overhead 221 KB 48.06 KB 6 KB 0.6 KB

Note: These PSCs are used by all manager algorithms, not just Puppeteer.

For each trace, we sort the PSCs based on the corresponding IPC values in descending order. We
generate a new table for each trace, where the table contains the top 10 PSC entries for the trace
and combine these tables to form a super-table that contains the top 10 PSCs for all traces. Note
that a PSC may be in the top 10 for more than one trace. We sort the PSCs in descending order
based on the number of traces for which the PSC is in the top 10. Starting from the top, we select
just enough PSCs to improve performance of all 20 traces. We picked the PSCs that have the best
performance with minimal coverage overlap while reducing the number of unique prefetchers
(to reduce the hardware overhead). In Table 6, we show the final 5 PSCs that we selected. These
PSCs give good performance for the maximum number of traces. We show the prefetcher used
at each cache level. It is interesting to note that the best prefetchers from DPC3 and IPC1—
IPCP and EIP—are not used in the top 5 choices for PSCs. This shows that the state-of-the-art
prefetchers designed in isolation may not be the best choice of prefetchers when used with other
prefetchers.

We collect the 4C STS and 4C MTS datasets in the same way as the 1C dataset—the only differ-
ence is that the data is collected per core. We then train BT and Puppeteer using datasets collected
from 1C, 4C STS, and 4C MTS. We denote the different flavors of the two algorithms as P1C, P4CS,
and P4CM for Puppeteer, and B1C, B4CS, and B4CM for BT.

5 EVALUATION RESULTS

5.1 Puppeteer in a 1C Processor

In this section, we present the processor performance analysis when using Puppeteer in 1C, 4C,
and 8C processors, a sensitivity analysis of how Puppeteer’s performance varies with cache size,
and we explore the trade-off between performance improvement and hardware overhead when
using Puppeteer. We evaluate Puppeteer using scope, accuracy, and power metrics. For the analysis
presented in Sections 5.1, 5.2, 5.3, and 5.4, we assume a total hardware overhead budget of 11 KB
for storing the Puppeteer model, and due to its simplicity (as explained in Section 2), we assume
negligible evaluation overhead for the computing logic.

In Figure 5, we show the IPC distribution for various static PSCs and prefetcher managers that
change the PSC at runtime. We begin our discussion with P1C, which is Puppeteer trained using
the 1C data suite. Broadly, compared to a processor with no prefetchers, P1C provides an average
performance gain of 46.0% (peak value of 613%). The true benefit of Puppeteer is observed when we
look closer into the performance loss in Figure 6. We observe that when using B1C, 53 traces lose
performance and 6 out of those 53 traces lose more than 10% performance. This performance loss
would make this solution non-acceptable. Puppeteer has a worst-case loss of only 5%, and only 8
traces in total have lower performance than SPP. In Figure 7, we show the performance loss/gain of
the 10 traces that have the worst performance for Puppeteer, when using five different managers:
NN, B1C, J3, PY, and P1C (Puppeteer). Across these 10 traces, Puppeteer, NN, B1C, J3, and PY have
an average performance loss of 1.9%, 6%, 6.6%, 4.8%, and 4.9%, respectively.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 1, Article 19. Publication date: December 2022.

Puppeteer: A Random Forest Based Manager for Hardware Prefetchers Across 19:15

Fig. 5. Normalized performance of a 1C processor. Performance distribution of Puppeteer and prior work
normalized to SPP [32]. See Table 3 for the notations used along the x-axis.

Fig. 6. Bottom 10 performance outliers of all managers on 1C. Performance normalized to SPP. Each group
shows the worst-performing traces for NN, B1C, J3, and PY, P1C ordered 10th worst (right-most) to 1st worst
(left-most).

Fig. 7. Bottom 10 performance outliers of P1C. Performance normalized to SPP. Each group shows the per-
formance of the bottom 10 traces for P1C when using NN, B1C, J3, and PY.

This clearly illustrates that Puppeteer provides a win-win situation, whereby we not only see
a better average performance gain but also see a reduction in the maximum performance loss
and the number of traces that have performance loss. For the other prior works, we observe that
P1C provides 4.65%, 5.8%, 12.2%, 15.3%, and 5.1% average IPC gain over IPCP, EIP, NN, PY, and J3,
respectively.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 1, Article 19. Publication date: December 2022.

19:16 F. Eris et al.

We also trained two more flavors for Puppeteer and BT using 4C STS and 4C MTS datasets.
P4CS and P4CM achieve 0.5% lower average performance gain than P1C. This is because Puppeteer
trained using 1C data is better suited for a 1C processor. However, the performance improvement
when using Puppeteer, which is trained with 4C data, is still quite large at 45% (average of P4CS
and P4CM) compared to a system with no prefetching. This means that Puppeteer generalizes
quite well and has learned the underlying architectural phenomena. Compared to B1C for B4CS
and B4CM, we observe 1% and 2% lower average performance, respectively. Furthermore, the per-
formance loss for the worst case outlier increases to 30%. Finally, one thing to note about J3 is
that its average IPC gain is 2.1% lower than B1C, yet the negative outliers are less in both quantity
and magnitude. This is because J3 makes more conservative changes compared to BT since the
algorithm cycles through the PSCs as part of a constantly ongoing trial phase. This means that
in a production capable system, J3 might have been more viable compared to BT. This is because
processors have to ensure that all applications retain or increase their performance across new
processor generations.

5.2 Puppeteer in a 4C Processor

Here we discuss the use of Puppeteer trained using 1C, 4C STS, and 4C MTS datasets in a 4C
processor. These cases are represented by P1C, P4CS, and P4CM, respectively. In Figure 8, we
show the IPC distribution of Puppeteer and the various prior works in a 4C system while running
a 4C STS data suite. We observe that the average IPC gain of P1C over the no prefetching case is
25.8%. Compared to B1C, P1C has 4.2% higher average performance. The worst-case performance
loss in B1C has gone up to 45%, whereas the worst-case loss of P1C is at only 19%. The number of
traces that lose performance is 61 for B1C, whereas P1C has just 24 traces that lose performance.
Compared to IPCP, EIP, NN, PY, and J3, our P1C achieves 10.8%, 4.8%, 8.7%, 6.8%, and 3.7% average
IPC gain, respectively. One key observation here is that although P1C has only been trained on
1C data, it is still applicable to the 4C case and provides a clear advantage over prior work. This
is important given that as the number of cores increases, the number of unique combinations of
different traces that we will need to run in the multi-core processor increases exponentially (for a
4C processor, we need to cover 2324 = 2.89 billion trace combinations). Therefore, generalization
using only 1C data is an important aspect to consider when comparing ML-based algorithms. To
further test Puppeteer and BT, we train both algorithms with 4C STS and 4C MTS data suites. For
Puppeteer, we observe that P4CS has 1.2% and P4CM has 2.2% better performance compared to
P1C (see Figure 8). For BT, B4CS has 4.0% and B4CM has 2.9% better performance compared to
B1C. This means that Puppeteer is better at learning the underlying (micro)architectural behavior
with a variety of traces running concurrently compared to the same trace running on all cores. In
contrast, BT requires data collected specifically from the same set of experiments to achieve better
performance.

In Figure 9, we show the IPC distribution of Puppeteer and the various prior work when running
4C MTS. P1C achieves 23% average performance gain over no prefetching. P1C’s average perfor-
mance gain is also very close (<0.6% difference) to the average performance gain of P4CS and
P4CM. Once again, we observe that Puppeteer is superior to BT in this regard, with B1C achieving
5% lower performance gain than P1C. B1C’s performance gain is also 4% lower than B4CS and 4.5%
lower than B4CM. When we observe the outliers, B1C has 23 outliers while P1C has only 3. The
worst-case outlier in B1C has 7% performance loss compared to SPP, whereas P1C has only 0.4%
loss. Compared to IPCP, EIP, NN, PY, and J3, our P1C (and also P4CS and P4CM) achieves 14.5%,
5%, 12.8%, 11.9%, and 4.4% average IPC gain, respectively.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 1, Article 19. Publication date: December 2022.

Puppeteer: A Random Forest Based Manager for Hardware Prefetchers Across 19:17

Fig. 8. Normalized performance of a 4C processor
running STS. Performance distribution of Puppeteer
and prior work normalized to SPP. Here, the re-
ported performance is average performance across
all cores. See Table 3 for the notations used along
the x-axis.

Fig. 9. Normalized performance of a 4C processor
running MTS. Performance distribution of Pup-
peteer and prior work normalized to SPP. Here,
the reported performance is average performance
across all cores. See Table 3 for the notations used
along the x-axis.

Fig. 10. Normalized performance of an 8C processor
running STS. Performance distribution of Puppeteer
and prior work normalized to SPP. Here the reported
performance is average performance across all cores.
See Table 3 for the notations used along the x-axis.

Fig. 11. Normalized performance of an 8C proces-
sor running MTS. Performance distribution of Pup-
peteer and prior work normalized to SPP. Here
the reported performance is average performance
across all cores. See Table 3 for the notations used
along the x-axis.

5.3 Puppeteer in an 8C Processor

Here we discuss the use of Puppeteer trained using 1C, 4C STS, and 4C MTS datasets in an 8C
processor. These cases are represented by P1C, P4CS, and P4CM, respectively. We conduct this 8C
processor analysis to test if Puppeteer scales to a larger number of cores. For an 8C processor run-
ning STS, we observe several interesting trends (Figure 10). P1C has 11.9% average IPC gain over
no prefetching, which is 4.8% higher than B1C. With P4CS and P4CM, our IPC gain is 12.7% and
12.9%, respectively, over the no prefetching case. This means that to train Puppeteer for a multi-
core processor, we should have at least some data corresponding to a multi-core processor in our
dataset. It should be noted that compared to the no prefetching case, P1C, P4CS, and P4CM have
lower IPC gain in the 8C processor than the 4C processor, which in turn has lower performance
gain than the 1C processor. This is because prefetching is much harder to do in multi-core pro-
cessors. The overall benefit of prefetching goes down in multi-core processors, and Puppeteer has
lower possible peak performance. Comparatively, B1C has almost 0% performance gain over SPP.
Even a static PSC, namely EIP, has 5.5% higher average IPC compared to B1C. P1C also gives
comparable performance to B4CS and B4CM even though P1C was not trained using any data
from a multi-core processor. When we observe the outliers, B1C has 83 outliers with worst-case
performance loss of 62%, whereas P1C has 47 outliers with worst-case performance loss of 35%.
Compared to IPCP, EIP, NN, PY, and J3, our P1C achieves 5.9%, 0.2%, 6.5%, 4.4%, and 1.2% average
IPC gain, respectively.

When using the 8C MTS (Figure 11), we observe similar trends to when using 8C STS. P1C has
2% better average IPC than B1C and comparable performance to B4CS and B4CM. P4CS and P4CM

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 1, Article 19. Publication date: December 2022.

19:18 F. Eris et al.

Fig. 12. Cache size sensitivity study. Average perfor-
mance of B1C, SPP, and P1C for 0.5×, 1×, 1.5×, and
2× the nominal L1$ and L2$ sizes. For each bar, we
change only the L1$ size or the L2$ size.

Fig. 13. Model size scaling. Average IPC impro-
vement on P1C and NN for different model sizes.

achieve 4% and 4.4% better average IPC compared to B1C. Compared to IPCP, EIP, NN, PY, and J3,
our P1C achieves 6.9%, 1.6%, 6.6%, 7.6%, and 3.1% average IPC gain, respectively.

5.4 Puppeteer Performance for Different Cache Sizes

In this section, we discuss how the performance of BT, SPP, and Puppeteer varies with cache size.
We train both models only using data collected on a 1C processor with 32-KB L1I$, 48-KB L1D$,
512-KB L2$, and 2-MB LLC. In Figure 12, we show the average IPC values of BT (i.e., B1C), SPP,
and Puppeteer (i.e., P1C) for 0.5×, 1×, 1.5×, and 2× the nominal L1$ and L2$ sizes. P1C is affected
by L1$ size slightly more than L2$ size, but the difference is small (at most 0.4% more performance
at 2× L1$ compared to 2× L2$). At 0.5× L1$ size, P1C has 1.5% lower performance compared to
the performance of P1C at nominal cache size. At 2× L1$ size, P1C has 1.1% better performance
compared to the performance of P1C at nominal cache size. At all cache sizes, P1C performs at
least 1% better than B1C with the largest performance difference of 2.3% at nominal cache size.
SPP performance swings by 5.5% between the 2× L1$ and the 0.5× L1$, and by 3.7% between the
2× L2$ and the 0.5× L1$. In contrast, P1C has only a 2.9% swing. This means that with P1C, we are
already operating close to the possible peak performance, and so increasing the cache size does
not have a significant effect on the performance.

5.5 Performance Improvement for Different Model Sizes

In Figure 13, we show the average IPC for 1C for the differently sized models. As is immediately
apparent, Puppeteer provides good performance improvement even when using a small model that
fits within 1 KB, whereas NN does not provide any performance improvement until we use a model
that requires 11 KB. At 11-KB model size, a 1C processor with an NN manager has 11.8% lower
average IPC as compared to a 1C processor with Puppeteer. The NN also has ∼ 3× larger area and
11× larger power as compared to Puppeteer. If we compare 100-KB NN to 1-KB Puppeteer, using
Puppeteer provides 11.6% performance improvement, whereas NN provides 9.7% performance im-
provement while the area and power of 100-KB NN is 76× and 185×, respectively, that of Puppeteer.
Therefore, NN is not suitable for hardware prefetcher adaptation.

5.6 Puppeteer Overheads

To understand the tradeoff between the overheads for selecting PSC using Puppeteer and the per-
formance improvement using Puppeteer, in this section we design Puppeteer when we have four
different hardware overhead budgets: 1 KB, 5 KB, 11 KB, and 100 KB. Here we train a different
Puppeteer model for each hardware overhead budget.

PSC selection. To select a PSC, Puppeteer just traverses through the random forest for each PSC. If
we evaluate all five forests in series, where we will require a maximum 500 comparison operations
(5 forests × 5 trees per forest × 10 comparisons = 250 comparison for 1 KB and 5 KB; 5 forests
× 5 trees per forest × 20 comparisons = 500 comparisons for 11 KB and 100 KB), it will take less

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 1, Article 19. Publication date: December 2022.

Puppeteer: A Random Forest Based Manager for Hardware Prefetchers Across 19:19

Table 7. Power and Area for Total Compute and Storage of
Puppeteer and NN

Algorithm Area (µm2) Area Norm. Power ((µW)) Power Norm.

Puppeteer 1KB 5,000 1× 4.7 1×
Puppeteer 5KB 10,000 2× 8 1.7×
Puppeteer 11KB 18,000 3.6× 9 1.9×
Puppeteer 100KB 140,000 28× 39 8.3×

NN 1KB 17,000 3.4× 14 3×
NN 5KB 40,000 8× 65 13.8×
NN 11KB 55,000 11× 100 21×
NN 100KB 380,000 76× 870 185×

Note: Here we use the SRAM compiler for designing node MEM and
design the compute logic using RTL, then synthesize it using Cadence
Genus for GF22FDX® [10].
Average power is given over one instruction window. Norm. values are
w.r.t. to Puppeteer 1-KB values.

Table 8. Node MEM Size, Area, Power, and Delay of Different Puppeteer Designs

SRAM Size,
Model

#Bits/Word,
#Words/SRAM Array

SRAM Arrays
Required

Area Norm.
Read Energy

Norm.
Delay (Cycles)

1-KB Puppeteer 38, 256 1 1× 1× 1
5-KB Puppeteer 42, 1,024 1 2× 1.3× 1
11-KB Puppeteer 44, 2,048 1 4.2× 1.5× 1
100-KB Puppeteer 50, 16,384 1 31× 3.5× 1

Note: Other than the node MEM, Puppeteer only needs a single comparator unit.
Write energy is not reported, as it is a low one-time cost. Note that values are normalized to 1-KB Puppeteer for
proprietary reasons.

than 0.5% of the total time required to execute the 100K instructions in the instruction window
(assuming each instruction takes on average a clock cycle). Thus, we end up using the chosen PSC
for 99.5% of the instruction window for Puppeteer. We would like to note that the hardware for
determining the best PSC is not on the critical path, and it runs in parallel to the normal application
execution without stopping the prefetchers.

Power and area overheads. In Table 7, we show the total area and power required for Puppeteer.
All designs in Table 7 are such that they need less than 0.5% of the instruction widow time to choose
a PSC. We calculate the power, area, and delay values using Cadence Genus and the SRAM array
compiler for 22-nm GLOBALFOUNDRIES® (GF22FDX) [10]. These area and power overheads are
much smaller compared to the area and power of the overall processor. In Table 8, we provide more
details about the Puppeteer design. We show the number of each type of logic component and
SRAM sizes for different configurations of Puppeteer. Note that the SRAM word length changes
for the different-sized Puppeteer configurations because we require additional bits to address a
larger number of nodes.

We would like to note that in most modern processors, the memory subsystem has multiple
prefetchers at each level of the cache hierarchy [1–3, 7, 21, 26, 27, 65]. In Table 6, we show the
overhead due to the prefetchers (not including Puppeteer) at each level of the memory hierar-
chy. This overhead is not unusual for today’s server class of CPU architectures that use multiple
prefetchers to target a variety of memory patterns.

5.7 Puppeteer Versus Other Managers

Power in caches. In Figure 14, we show the average power consumed in the caches for various
static PSCs and the prior managers compared to Puppeteer. We calculate the power using Cadence
Genus and the SRAM array compiler for GF22FDX® [10]. Compared to the no prefetching case,

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 1, Article 19. Publication date: December 2022.

19:20 F. Eris et al.

Fig. 14. Average power consumed in the caches (normalized to SPP) when using Puppeteer and prior work.
Here, 1C = 1C data suite, 4CS = 4C single-type trace set data suite, 4CM = 4C mixed-type trace set data
suite, 8CS = 8C single-type trace set data suite, and 8CM = 8C mixed-type trace set data suite.

Puppeteer has 65% higher power consumption overall. Compared to BT (average of B1C, B4CS,
and B4CM), Puppeteer (average of P1C, P4CS, and P4CM) has 9% lower average power. NN and
J3 have 6.3% and 2.2% lower average power than Puppeteer, and as we have discussed, they also
have significantly lower average IPC. For the static PSC, EIP is extremely power hungry, with
the highest average power being 20.4% more than Puppeteer. IPCP and NO have lower power
consumption than Puppeteer, but they also have the worst performance among all options we have
considered.

Scope. In Figure 15, we compare the prefetching scope of the prior works and Puppeteer. Here
we determine scope as the number of total misses reduced by the prefetcher or prefetching system,
divided by the total number of misses with prefetching disabled. We observe very limited scope
across the four levels of the memory hierarchy for NN and J3. This is probably one of the reasons
these options have lower performance than BT and Puppeteer. Comparing BT (average of B1C,
B4CS, and B4CM) and Puppeteer (average of P1C, P4CS, and P4CM), in L1D$ and L2$, BT achieves
a marginal difference with 0.5% broader scope than Puppeteer. In L1I$ cache, BT actually has 3.3%
broader scope compared to Puppeteer. However, Puppeteer has 4.8% broader scope compared to
BT in LLC. Intuitively, since LLC penalties are more important than L1I$, L1D$, and L2$ penalties,
this is a better outcome. Experimentally, our results also support this outcome since Puppeteer has
better performance than BT.

Accuracy. In Figure 16, we compare the prefetching accuracy of Puppeteer and the prior works.
Here, accuracy of a prefetcher is measured as the number of misses that a prefetcher or prefetcher
system has reduced compared to the case when prefetching is disabled, divided by the number of
misses caused by the prefetcher. Puppeteer is better than the other options in L1I$ and L1D$, but
comparable in L2$. In LLC, J3 fairs better than the other options with only 1.5% lower accuracy
than Puppeteer. In case of BT and NN, Puppeteer achieves 21% better accuracy compared to BT and
28% better accuracy compared to NN. It is also of note that since the accuracy of Puppeteer in L1I$
is 6.7% better compared to BT, this better accuracy plays a role in compensating for the broader
L1I$ scope of BT compared to Puppeteer.

5.8 Temporal Variations in PSC When Using Puppeteer

In Figure 17, we show the temporal behavior of P1C, B1C, and J3 while running 429.mcf-217B
as an example. Figure 17(a) shows the percentage of time for which each PSC was used by each
manager algorithm when executing 1.2B instructions of 429.mcf-217B. In Figure 17(b), we show
the IPC values and the PSC used in each instruction window for a small slice of the same trace. We
would like to note three interesting observations. First, from Figure 17(a), both B1C and P1C use
fnl-bingo-spp-no for the 80% of the instruction windows, yet the performance difference between
the two is around 20% over the whole trace. This means that the PSC chosen in the remaining
20% of the instruction windows have a larger influence on the overall performance. Second, in

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 1, Article 19. Publication date: December 2022.

Puppeteer: A Random Forest Based Manager for Hardware Prefetchers Across 19:21

Fig. 15. Average scope of Puppeteer and the prior
works in a 1C Processor. See Table 3 for the notations
used along the x-axis.

Fig. 16. Average prefetching accuracy of Puppeteer
and the prior works in a 1C processor. See Table 3
for the notations used along the x-axis.

Fig. 17. Temporal behavior. Percentage usage of each PSC for the P1C, B1C, and J3 (a) and IPC gain when
using P1C, B1C and J3 across 50 instruction windows and running 429.mcf-217B (b). For each plot line, for
an instruction window we use color coding to indicate the PSC choice. The PSC descriptions are provided in
Table 6.

the first 25 instruction windows after the 5,000th instruction window, there is a large variation in
IPC gain when using B1C as compared to P1C, whereas all three algorithms converge to the same
performance and same PSC during the last 25 instruction windows. This shows that P1C does a
better job at predicting the PSC in different regions of an application. Third, J3 uses the same PSC
as P1C but has lower performance in the first 25 instruction windows. This illustrates that chang-
ing the PSC has a cumulative effect on IPC. The choice of PSC made by P1C in prior instruction
windows allowed P1C to gain more performance in the given instruction windows compared
to J3.

5.9 Random Forest Regressors Versus Other Regressors

In this section, we compare (see Figure 18) the random forest regressor, which is our choice of
the regression algorithm of Puppeteer, with three other regression algorithms: linear regressor
[67], passive aggressive regressor [13], and gradient boosted regressor [40]. We compared the four
regression algorithms for the 1C system. When used as part of Puppeteer, the random forest regres-
sor has 1.7%, 1.2%, and 0.55% higher average IPC compared to linear regressor, passive aggressive
regressor, and gradient boosted regressor, respectively. Furthermore, we observe 6.7%, 14.9%, and
8.2% worst-case IPC loss for linear regressor, passive aggressive regressor, and gradient boosted
regressor, respectively, compared to the 5% worst-case IPC loss for random forest regressor. The

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 1, Article 19. Publication date: December 2022.

19:22 F. Eris et al.

Fig. 18. Normalized performance of a 1C processor. Performance distribution of four different regression
algorithms when used in Puppeteer. Here, LR stands for linear regressor, PR stands for passive-aggressive
regressor, GB stands for gradient-boosted regressor, and RF stands for random forest regressor.

performance of Puppeteer could conceivably be further increased by mixing and matching differ-
ent regressors for each PSC.

6 CONCLUSION AND FUTURE WORK

In this work, we introduce Puppeteer, a novel ML-based prefetcher manager designed using
custom-tailored random forests. We train a dedicated random forest for each PSC, which allows
the random forest to retain more information in a smaller amount of hardware. For the 232 traces
that we evaluated, Puppeteer achieves an average performance gain of 46.0% in 1C, 25.8% in 4C,
and 11.9% in 8C compared to a system with no prefetching. Puppeteer also reduces the number of
negative outliers by 89%. As future work, we will explore a unified design of an ML-based manager
that selects from an array of ML-based prefetchers.

ACKNOWLEDGMENTS

We want to thank the reviewers for their comments during the various iterations of this work.
Thanks to Dr. Paul Keltcher for being an invaluable resource and providing great feedback.

REFERENCES

[1] AMD. 2017. AMD Ryzen Processor. Retrieved November 9, 2022 from https://www.amd.com/en/ryzen.
[2] AMD. 2020. Software Optimization Guide for AMD EPYCTM 7001 Processors. Retrieved November 9, 2022 from https://

developer.amd.com/wordpress/media/2013/12/55723_SOG_Fam_17h_Processors_3.00.pdf.
[3] AMD. 2022. GDC 2022 - AMD RyzenTM Processor Software Optimization. Retrieved November 9, 2022 from https://

youtu.be/helEx02HN_I.
[4] Mohammad Bakhshalipour, Mehran Shakerinava, Pejman Lotfi-Kamran, and Hamid Sarbazi-Azad. 2019. Bingo spatial

data prefetcher. In Proceedings of the 2019 IEEE International Symposium on High Performance Computer Architecture

(HPCA’19). IEEE, Los Alamitos, CA, 399–411.
[5] Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreenivas Subramoney, and Onur Mutlu. 2021.

Pythia: A customizable hardware prefetching framework using online reinforcement learning. In Proceedings of the

54th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-54). 1121–1137.
[6] Eshan Bhatia, Gino Chacon, Seth Pugsley, Elvira Teran, Paul V. Gratz, and Daniel A. Jiménez. 2019. Perceptron-based

prefetch filtering. In Proceedings of the 2019 ACM/IEEE 46th Annual International Symposium on Computer Architecture

(ISCA’19). IEEE, Los Alamitos, CA, 1–13.
[7] Advanced Micro Devices Bios. 2010. Kernel Developer Guide (BKDG) for AMD Family 10h Models 00h-0fh Processors.

Available at https://www.amd.com.
[8] Peter Braun and Heiner Litz. 2019. Understanding memory access patterns for prefetching. In Proceedings of the Inter-

national Workshop on AI-Assisted Design for Architecture (AIDArc) Held in Conjunction with ISCA.
[9] Jason F. Cantin, Mikko H. Lipasti, and James E. Smith. 2006. Stealth prefetching. ACM SIGPLAN Notices 41, 11 (2006),

274–282.
[10] R. Carter, J. Mazurier, L. Pirro, J. U. Sachse, P. Baars, J. Faul, C. Grass, et al. 2016. 22nm FDSOI technology for emerging

mobile, Internet-of-Things, and RF applications. In Proceedings of the 2016 IEEE International Electron Devices Meeting

(IEDM’16). IEEE, Los Alamitos, CA, 2.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 1, Article 19. Publication date: December 2022.

https://www.amd.com/en/ryzen
https://developer.amd.com/wordpress/media/2013/12/55723_SOG_Fam_17h_Processors_3.00.pdf
https://youtu.be/helEx02HN_I
https://www.amd.com

Puppeteer: A Random Forest Based Manager for Hardware Prefetchers Across 19:23

[11] Standard Performance Evaluation Corporation. 2006. SPEC CPU® 2006. Retrieved November 9, 2022 from https://
www.spec.org/cpu2006/

[12] Standard Performance Evaluation Corporation. 2017. SPEC CPU® 2017. Retrieved November 9, 2022 from https://
www.spec.org/cpu2017/

[13] Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, and Yoram Singer. 2006. Online passive aggressive
algorithms. Journal of Machine Learning Research 7 (2006), 551–585.

[14] Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt. 2010. Fairness via source throttling: A config-
urable and high-performance fairness substrate for multi-core memory systems. ACM SIGPLAN Notices 45, 3 (2010),
335–346.

[15] Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt. 2011. Prefetch-aware shared resource management
for multi-core systems. ACM SIGARCH Computer Architecture News 39, 3 (2011), 141–152.

[16] Eiman Ebrahimi, Onur Mutlu, Chang Joo Lee, and Yale N. Patt. 2009. Coordinated control of multiple prefetchers in
multi-core systems. In Proceedings of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture. IEEE,
Los Alamitos, CA, 316–326.

[17] Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt. 2009. Techniques for bandwidth-efficient prefetching of linked data
structures in hybrid prefetching systems. In Proceedings of the 2009 IEEE 15th International Symposium on High Per-

formance Computer Architecture. IEEE, Los Alamitos, CA, 7–17.
[18] Babak Falsafi and Thomas F. Wenisch. 2014. A primer on hardware prefetching. Synthesis Lectures on Computer Ar-

chitecture 9, 1 (2014), 1–67.
[19] Vladyslav Fedchenko, Giovanni Neglia, and Bruno Ribeiro. 2019. Feedforward neural networks for caching: N enough

or too much? ACM SIGMETRICS Performance Evaluation Review 46, 3 (2019), 139–142.
[20] Ilya Ganusov and Martin Burtscher. 2005. Future execution: A hardware prefetching technique for chip multiproces-

sors. In Proceedings of the 14th International Conference on Parallel Architectures and Compilation Techniques (PACT’05).
IEEE, Los Alamitos, CA, 350–360.

[21] Intel. 2011. Intel® 64 and IA-32 Architectures Software Developer‘s Manual. Available at https://www.intel.com.
[22] Milad Hashemi, Kevin Swersky, Jamie A. Smith, Grant Ayers, Heiner Litz, Jichuan Chang, Christos Kozyrakis, and

Parthasarathy Ranganathan. 2018. Learning memory access patterns. arXiv preprint arXiv:1803.02329.

[23] Wim Heirman, Kristof Du Bois, Yves Vandriessche, Stijn Eyerman, and Ibrahim Hur. 2018. Near-side prefetch throt-
tling: Adaptive prefetching for high-performance many-core processors. In Proceedings of the 27th International Con-

ference on Parallel Architectures and Compilation Techniques. 1–11.
[24] Jason Hiebel, Laura E. Brown, and Zhenlin Wang. 2019. Machine learning for fine-grained hardware prefetcher control.

In Proceedings of the 48th International Conference on Parallel Processing. 1–9.
[25] Ibrahim Hur and Calvin Lin. 2006. Memory prefetching using adaptive stream detection. In Proceedings of the 2006

39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’06). IEEE, Los Alamitos, CA, 397–408.
[26] Intel. 2017. Intel i9. Retrieved November 9, 2022 from https://www.intel.com/content/www/us/en/products/details/

processors/core/i9.html
[27] Intel. 2017. Tuning Intel Xeon. Retrieved November 9, 2022 from https://community.intel.com/t5/Software-Tuning-

Performance/How-to-control-the-four-hardware-prefetchers-in-L1-and-L2-more/td-p/1104586.
[28] Majid Jalili and Mattan Erez. 2022. Managing prefetchers with deep reinforcement learning. IEEE Computer Architec-

ture Letters 21, 2 (2022), 105–108.
[29] Victor Jiménez, Roberto Gioiosa, Francisco J. Cazorla, Alper Buyuktosunoglu, Pradip Bose, and Francis P. O’Connell.

2012. Making data prefetch smarter: Adaptive prefetching on POWER7. In Proceedings of the 2012 21st International

Conference on Parallel Architectures and Compilation Techniques (PACT’12). IEEE, Los Alamitos, CA, 137–146.
[30] A. Kagi, James R. Goodman, and Doug Burger. 1996. Memory bandwidth limitations of future microprocessors. In

Proceedings of the 23rd Annual International Symposium on Computer Architecture (ISCA’96). IEEE, Los Alamitos, CA,
78–78.

[31] Hui Kang and Jennifer L. Wong. 2013. To hardware prefetch or not to prefetch? A virtualized environment study and
core binding approach. ACM SIGPLAN Notices 48 (2013), 357–368.

[32] Jinchun Kim, Seth H. Pugsley, Paul V. Gratz, A. L. Narasimha Reddy, Chris Wilkerson, and Zeshan Chishti. 2016. Path
confidence based lookahead prefetching. In Proceedings of the 2016 49th Annual IEEE/ACM International Symposium

on Microarchitecture (MICRO-49). IEEE, Los Alamitos, CA, 1–12.
[33] Jinchun Kim, Elvira Teran, Paul V. Gratz, Daniel A. Jiménez, Seth H. Pugsley, and Chris Wilkerson. 2017. Kill the

program counter: Reconstructing program behavior in the processor cache hierarchy. ACM SIGPLAN Notices 52,
4 (2017), 737–749.

[34] Sushant Kondguli and Michael Huang. 2018. Division of labor: A more effective approach to prefetching. In Proceedings

of the 2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA’18). IEEE, Los Alamitos,
CA, 83–95.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 1, Article 19. Publication date: December 2022.

https://www.spec.org/cpu2006/
https://www.spec.org/cpu2017/
https://www.intel.com
https://www.intel.com/content/www/us/en/products/details/processors/core/i9.html
https://community.intel.com/t5/Software-Tuning-Performance/How-to-control-the-four-hardware-prefetchers-in-L1-and-L2-more/td-p/1104586

19:24 F. Eris et al.

[35] Miron Bartosz Kursa. 2014. Robustness of random forest-based gene selection methods. BMC Bioinformatics 15,
1 (2014), 1–8.

[36] Jaekyu Lee, Hyesoon Kim, and Richard Vuduc. 2012. When prefetching works, when it doesn’t, and why. ACM Trans-

actions on Architecture and Code Optimization 9, 1 (2012), 1–29.
[37] Shih-Wei Liao, Tzu-Han Hung, Donald Nguyen, Chinyen Chou, Chiaheng Tu, and Hucheng Zhou. 2009. Machine

learning-based prefetch optimization for data center applications. In Proceedings of the Conference on High Performance

Computing Networking, Storage, and Analysis. 1–10.
[38] Peng Liu, Jiyang Yu, and Michael C. Huang. 2016. Thread-aware adaptive prefetcher on multicore systems: Improving

the performance for multithreaded workloads. ACM Transactions on Architecture and Code Optimization 13, 1 (2016),
1–25.

[39] Pranita Maldikar. 2014. Adaptive Cache Prefetching Using Machine Learning and Monitoring Hardware Performance

Counters. Ph.D. Dissertation. University of Minnesota.
[40] Llew Mason, Jonathan Baxter, Peter Bartlett, and Marcus Frean. 1999. Boosting algorithms as gradient descent. In

Proceedings of the 12th International Conference on Neural Information Processing Systems (NIPS’99). 512–518.
[41] Francis B. Moreira, Matthias Diener, Philippe O. A. Navaux, and Israel Koren. 2017. Data mining the memory access

stream to detect anomalous application behavior. In Proceedings of the Computing Frontiers Conference. 45–52.
[42] Tomoki Nakamura, Toru Koizumi, Yuya Degawa, Hidetsugu Irie, Shuichi Sakai, and Ryota Shioya. 2020. D-JOLT:

Distant Jolt Prefetcher. Retrieved November 9, 2022 from https://research.ece.ncsu.edu/wp-content/uploads/sites/19/
2020/05/D-JOLT.pdf.

[43] Arvind Narayanan, Saurabh Verma, Eman Ramadan, Pariya Babaie, and Zhi-Li Zhang. 2018. DeepCache: A deep
learning based framework for content caching. In Proceedings of the 2018 Workshop on Network Meets AI and ML.
48–53.

[44] Thais Mayumi Oshiro, Pedro Santoro Perez, and José Augusto Baranauskas. 2012. How many trees in a random forest?
In Proceedings of the International Workshop on Machine Learning and Data Mining in Pattern Recognition. 154–168.

[45] Samuel Pakalapati and Biswabandan Panda. 2020. Bouquet of instruction pointers: Instruction pointer classifier-based
spatial hardware prefetching. In Proceedings of the 2020 ACM/IEEE 47th Annual International Symposium on Computer

Architecture (ISCA’20). IEEE, Los Alamitos, CA, 118–131.
[46] Leeor Peled, Shie Mannor, Uri Weiser, and Yoav Etsion. 2015. Semantic locality and context-based prefetching using

reinforcement learning. In Proceedings of the 42nd Annual International Symposium on Computer Architecture (ISCA’15).
285–297.

[47] Leeor Peled, Uri Weiser, and Yoav Etsion. 2019. A neural network prefetcher for arbitrary memory access patterns.
ACM Transactions on Architecture and Code Optimization 16, 4 (2019), 1–27.

[48] Erez Perelman, Greg Hamerly, and Brad Calder. 2003. Picking statistically valid and early simulation points. In Proceed-

ings of the 2003 12th International Conference on Parallel Architectures and Compilation Techniques. IEEE, Los Alamitos,
CA, 244–255.

[49] Seth Pugsley et al. 2019. DPC3. Retrieved November 9, 2022 from https://dpc3.compas.cs.stonybrook.edu/.
[50] Seth Pugsley et al. 2020. ChampSim. Retrieved November 9, 2022 from https://github.com/ChampSim/ChampSim.
[51] Seth Pugsley et al. 2020. IPC1. Retrieved November 9, 2022 from https://research.ece.ncsu.edu/ipc/.
[52] Saami Rahman, Martin Burtscher, Ziliang Zong, and Apan Qasem. 2015. Maximizing hardware prefetch effectiveness

with machine learning. In Proceedings of the 2015 IEEE 17th International Conference on High Performance Computing

and Communications, the 2015 IEEE 7th International Symposium on Cyberspace Safety and Security, and the 2015 IEEE

12th International Conference on Embedded Software and Systems. IEEE, Los Alamitos, CA, 383–389.
[53] Marko Robnik-Šikonja. 2004. Improving random forests. In Proceedings of the European Conference on Machine Learn-

ing. 359–370.
[54] Joseph Rogers. 2019. Effects of an LSTM Composite Prefetcher. Retrieved November 9, 2022 from https://www.diva-

portal.org/smash/get/diva2:1369282/FULLTEXT01.pdf.
[55] Alberto Ros and Alexandra Jimborean. 2020. The entangling instruction prefetcher. IEEE Computer Architecture Letters

19, 2 (2020), 84–87.
[56] André Seznec. 2020. The FNL+MMA Instruction Cache Prefetcher. Retrieved November 9, 2022 from https://research.

ece.ncsu.edu/wp-content/uploads/sites/19/2020/05/FNLMMA-final.pdf.
[57] Mehran Shakerinava, Mohammad Bakhshalipour, Pejman Lotfi-Kamran, and Hamid Sarbazi-Azad. 2019. Multi-

lookahead offset prefetching. In the Third Data Prefetching Championship (DPC3), in Conjunction with the International

Symposium on Computer Architecture (ISCA’19). 1–4.
[58] Manjunath Shevgoor, Sahil Koladiya, Rajeev Balasubramonian, Chris Wilkerson, Seth H. Pugsley, and Zeshan Chishti.

2015. Efficiently prefetching complex address patterns. In Proceedings of the 2015 48th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO-48). IEEE, Los Alamitos, CA, 141–152.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 1, Article 19. Publication date: December 2022.

https://research.ece.ncsu.edu/wp-content/uploads/sites/19/2020/05/D-JOLT.pdf
https://dpc3.compas.cs.stonybrook.edu/
https://github.com/ChampSim/ChampSim
https://research.ece.ncsu.edu/ipc/
https://www.diva-portal.org/smash/get/diva2:1369282/FULLTEXT01.pdf
https://research.ece.ncsu.edu/wp-content/uploads/sites/19/2020/05/FNLMMA-final.pdf

Puppeteer: A Random Forest Based Manager for Hardware Prefetchers Across 19:25

[59] Zhan Shi, Akanksha Jain, Kevin Swersky, Milad Hashemi, Parthasarathy Ranganathan, and Calvin Lin. 2019. A Neural
Hierarchical Sequence Model for Irregular Data Prefetching. Retrieved November 9, 2022 from https://www.cs.utexas.
edu/~lin/papers/mlsys19.pdf.

[60] Zhan Shi, Akanksha Jain, Kevin Swersky, Milad Hashemi, Parthasarathy Ranganathan, and Calvin Lin. 2021. A hier-
archical neural model of data prefetching. In Proceedings of the 26th ACM International Conference on Architectural

Support for Programming Languages and Operating Systems. 861–873.
[61] Stephen Somogyi, Thomas F. Wenisch, Anastassia Ailamaki, Babak Falsafi, and Andreas Moshovos. 2006. Spatial

memory streaming. ACM SIGARCH Computer Architecture News 34, 2 (2006), 252–263.
[62] Santhosh Srinath, Onur Mutlu, Hyesoon Kim, and Yale N. Patt. 2007. Feedback directed prefetching: Improving the

performance and bandwidth-efficiency of hardware prefetchers. In Proceedings of the 2007 IEEE 13th International

Symposium on High Performance Computer Architecture. IEEE, Los Alamitos, CA, 63–74.
[63] Ajitesh Srivastava, Angelos Lazaris, Benjamin Brooks, Rajgopal Kannan, and Viktor K. Prasanna. 2019. Predicting

memory accesses: The road to compact ML-driven prefetcher. In Proceedings of the International Symposium on Mem-

ory Systems. 461–470.
[64] Dan Steinberg. 2009. CART: Classification and regression trees. In The Top Ten Algorithms in Data Mining. Chapman

& Hall/CRC, 193–216.
[65] Gongjin Sun, Junjie Shen, and Alexander V. Veidenbaum. 2019. Combining prefetch control and cache partitioning

to improve multicore performance. In Proceedings of the 2019 IEEE International Parallel and Distributed Processing

Symposium (IPDPS’19). IEEE, Los Alamitos, CA, 953–962.
[66] Zhenlin Wang, Doug Burger, Kathryn S. McKinley, Steven K. Reinhardt, and Charles C. Weems. 2003. Guided region

prefetching: A cooperative hardware/software approach. In Proceedings of the 2003 30th Annual International Sympo-

sium on Computer Architecture. IEEE, Los Alamitos, CA, 388–398.
[67] Sanford Weisberg. 2005. Applied Linear Regression. Vol. 528. John Wiley & Sons.
[68] Thomas F. Wenisch, Michael Ferdman, Anastasia Ailamaki, Babak Falsafi, and Andreas Moshovos. 2009. Practical off-

chip meta-data for temporal memory streaming. In Proceedings of the 2009 IEEE 15th International Symposium on High

Performance Computer Architecture. IEEE, Los Alamitos, CA, 79–90.
[69] Carole-Jean Wu, Aamer Jaleel, Will Hasenplaugh, Margaret Martonosi, Simon C. Steely Jr., and Joel Emer. 2011. SHiP:

Signature-based hit predictor for high performance caching. In Proceedings of the 44th Annual IEEE/ACM International

Symposium on Microarchitecture. 430–441.
[70] W. A. Wulf and Sally A. McKee. 1995. Hitting the memory wall: Implications of the obvious. ACM SIGARCH Computer

Architecture News 23, 1 (1995), 20–24.
[71] Yuan Zeng and Xiaochen Guo. 2017. Long short term memory based hardware prefetcher: A case study. In Proceedings

of the International Symposium on Memory Systems (MEMSYS’17). 305–311.
[72] Naifu Zhang, Kaibin Zheng, and Meixia Tao. 2018. Using grouped linear prediction and accelerated reinforcement

learning for online content caching. In Proceedings of the 2018 IEEE International Conference on Communications Work-

shops (ICC Workshops’18). IEEE, Los Alamitos, CA, 1–6.
[73] Pengmiao Zhang, Ajitesh Srivastava, Benjamin Brooks, Rajgopal Kannan, and Viktor K. Prasanna. 2020. RAOP: Recur-

rent neural network augmented offset prefetcher. In Proceedings of the International Symposium on Memory Systems.
352–362.

Received 29 January 2022; revised 28 July 2022; accepted 17 October 2022

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 1, Article 19. Publication date: December 2022.

https://www.cs.utexas.edu/~lin/papers/mlsys19.pdf

