
MAD: Memory-Aware Design Techniques for Accelerating
Fully Homomorphic Encryption

Rashmi Agrawal
Boston University, Boston, USA

rashmi23@bu.edu

Leo de Castro
MIT, Cambridge, USA

ldec@mit.edu

Chiraag Juvekar
Analog Devices, Boston, USA
chiraag.juvekar@analog.com

Anantha Chandrakasan
MIT, Cambridge, USA
anantha@mit.edu

Vinod Vaikuntanathan
MIT, Cambridge, USA

vinodv@mit.edu

Ajay Joshi
Boston University, Boston, USA

joshi@bu.edu

ABSTRACT
Cloud computing has made it easier for individuals and companies
to get access to large compute and memory resources. However, it
has also raised privacy concerns about the data that users share with
the remote cloud servers. Fully homomorphic encryption (FHE)
offers a solution to this problem by enabling computations over en-
crypted data. Unfortunately, all known constructions of FHE require
a noise term for security, and this noise grows during computation.
To perform unlimited computations on the encrypted data, we need
to perform a periodic noise reduction step known as bootstrap-
ping. This bootstrapping operation is memory-bound as it requires
several GBs of data. This leads to orders of magnitude increase in
the time required for operating on encrypted data as compared to
unencrypted data.

In this work, we first present an in-depth analysis of the boot-
strapping operation in the CKKS FHE scheme. Similar to other
existing works, we observe that CKKS bootstrapping exhibits a low
arithmetic intensity (<1 Op/byte). We then propose memory-aware
design (MAD) techniques to accelerate the bootstrapping opera-
tion of the CKKS FHE scheme. Our proposed MAD techniques are
agnostic of the underlying compute platform and can be equally
applied to GPUs, CPUs, FPGAs, and ASICs. Our MAD techniques
make use of several caching optimizations that enable maximal data
reuse and perform reordering of operations to reduce the amount
of data that needs to be transferred to/from the main memory. In
addition, our MAD techniques include several algorithmic optimiza-
tions that reduce the number of data access pattern switches and
the expensive NTT operations. Applying our MAD optimizations
for FHE improves bootstrapping arithmetic intensity by 3×. For
Logistic Regression (LR) training, by leveraging our MAD optimiza-
tions, the existing GPU design can get up to 3.5× improvement
in performance for the same on-chip memory size. Similarly, the
existing ASIC designs can get up to 27× and 57× improvement in
performance for LR training and ResNet-20 inference, respectively,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0329-4/23/10. . . $15.00
https://doi.org/10.1145/3613424.3614302

while reducing the on-chip memory requirement by 16×, which
proportionally reduces the cost of the solution.

CCS CONCEPTS
• Security and privacy→ Cryptography; • Computer systems
organization→ Architectures.

KEYWORDS
Fully Homomorphic Encryption, CKKS Scheme, Memory Bottle-
neck Analysis, Cache Optimizations, SimFHE, Hardware Accelera-
tion, Bootstrapping
ACM Reference Format:
Rashmi Agrawal, Leo de Castro, Chiraag Juvekar, Anantha Chandrakasan,
Vinod Vaikuntanathan, and Ajay Joshi. 2023. MAD: Memory-Aware Design
Techniques for Accelerating Fully Homomorphic Encryption. In 56th An-
nual IEEE/ACM International Symposium on Microarchitecture (MICRO ’23),
October 28–November 01, 2023, Toronto, ON, Canada. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3613424.3614302

1 INTRODUCTION
Cloud-based systems enable reliable and affordable access to shared
computing resources at scale. However, these shared resources
raise data security and privacy concerns [26]. We need techniques
to guarantee the confidentiality of user data when it is shared
with third-party cloud services. Fully homomorphic encryption
(FHE) [14, 29] is one such technique that enables cloud operators to
perform complex computations on encrypted user data without ever
needing to decrypt it. While FHE provides impressive privacy gains,
computing over encrypted data is multiple orders of magnitude
slower than operating on unencrypted data [21].

At a high level, in all constructions of FHE, this large overhead
is due to the presence of a noise term in the ciphertext. Each
homomorphic operation performed on the ciphertext increases
the noise in the ciphertext. If this noise grows beyond a critical
level, the recovery of the computation output is impossible. Sus-
tained FHE computation thus requires a periodic de-noising pro-
cedure, called bootstrapping, to keep the noise below a correct-
ness threshold [14]. This is true irrespective of the FHE scheme,
i.e., Brakerski-Gentry-Vaikuntanathan (BGV) [6], Brakerski/Fan-
Vercauteren (B/FV) [5, 13], or Cheon-Kim-Kim-Song (CKKS) [11].

In this work, we focus on the CKKS FHE scheme as it sup-
ports floating-point operations, enabling many practical privacy-
preserving computing applications such as machine learning train-
ing and inference. The CKKS bootstrapping step is expensive in

https://doi.org/10.1145/3613424.3614302
https://doi.org/10.1145/3613424.3614302

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Agrawal et al.

terms of both compute and memory requirements, and is often
>100× more expensive than primitive operations like addition and
multiplication on encrypted data [1, 20]. In addition, in CKKS-based
FHE applications, bootstrapping alone constitutes the majority of
the runtime; even when heavily optimized, bootstrapping consumes
∼80% of the time in machine learning applications [20, 25].

Given that this bootstrapping step is the main bottleneck of
the CKKS FHE scheme, it is natural to ask if hardware could be
employed to accelerate the bootstrapping operation. Numerous
prior works have explored this question [20, 24, 25, 30, 31], and
they have each empirically found that their compute-accelerated
implementations are bottlenecked by the main-memory bandwidth.
Some of the recent works such as ARK [24] and CraterLake [31]
tried alleviating the memory bandwidth bottleneck by using a large
256 and 512 MB on-chip memory, respectively. However, to accom-
modate this large 512 MB memory on-chip, one needs to use an
advanced technology node like the 7nm[12], which is prohibitively
expensive [3, 23].

In this paper, we focus on developing cost-effective solutions for
accelerating bootstrapping. In particular, we focus on developing
solutions for chips that cannot afford to have more than a few dozen
MBs of on-chip memory. To this end, we first measure the com-
pute and memory bandwidth requirements of hardware-accelerated
CKKS using a custom simulator called SimFHE. SimFHE simulates
the execution of CKKS-based applications in detail, from primitive
operations (basic building blocks of CKKS) to bootstrapping. For
a given application, SimFHE tracks the number of compute opera-
tions and the data movement between DRAM and on-chip memory.
SimFHE supports any CKKS parameter set and a variety of on-chip
memory sizes. Our analysis using SimFHE reveals that, without a
prohibitively large on-chip memory, all FHE operations exhibit low
arithmetic intensity (<1 Op/byte) and are memory bounded.

To address the memory bottleneck resulting from the low arith-
metic intensity, and in turn, improve performance, we propose
several memory-aware design (MAD) techniques that reduce the
memory requirements of CKKS-based application execution. Our
MAD techniques, detailed in Section 3, include caching optimiza-
tions as well as algorithmic optimizations. They are agnostic of the
underlying compute platform, and can be easily applied on top of
existing GPU, CPU, FPGA, and ASIC solutions for FHE acceleration.
Our caching optimizations reorder the operations to maximize data
reuse in the bootstrapping algorithm. This reordering significantly
reduces the number of DRAM accesses alleviating the memory
bandwidth bottleneck. Our algorithmic optimizations reduce the
number of times the bootstrapping algorithm oscillates between
the limb-wise representation and slot-wise representation of a ci-
phertext, which greatly reduces the number of DRAM transfers. In
summary, in this work, we make the following key contributions:

• We present caching optimizations that reduce the memory band-
width requirements of CKKS bootstrapping. These optimizations
enable maximal data reuse by reordering operations. Using our
caching optimizations, we can accelerate CKKS-based applica-
tions running on compute platforms even with small on-chip
memory (<32 MB).
• We present several hardware-agnostic algorithmic optimizations
that reduce the number of data access pattern switches and the

expensiveNTT operations, by reducing the number ofModDown
sub-operations in various operations such as Mult and Rotate.
These optimizations reduce the number of DRAM accesses for
CKKS bootstrapping.
• We develop SimFHE, a custom simulator that can be used to
benchmark the compute and memory requirements of CKKS at
different scales: from primitive operations to end-to-end appli-
cations such as machine-learning training. In the spirit of open
science, we open source1 SimFHE for the benefit of the research
community at large.
Based on our benchmarking results of the MAD techniques using

SimFHE, we propose an optimized, memory-aware CKKS parame-
ter set that maximizes the throughput of CKKS bootstrapping for
systems with limited on-chip memory. Applying our MAD opti-
mizations for FHE improves bootstrapping arithmetic intensity by
3×. For Logistic Regression (LR) training, by leveraging our MAD
optimizations, the existing GPU design can get up to 3.5× improve-
ment in performance for the same on-chip memory size. Similarly,
the existing ASIC designs can get up to 27× and 57× improvement
in performance for LR training and ResNet-20 inference, respec-
tively, while reducing the on-chip memory requirement by 16×,
which proportionally reduces the cost of the solution.

2 BACKGROUND
In this section, we briefly review the CKKS scheme. In Table 1 we
summarize the various parameters we use for describing the CKKS
scheme.

2.1 CKKS Basics
The high-level operations of CKKS compute homomorphically over
the plaintext space. The basic plaintext data-type in CKKS is a
vector of length 𝑛 where each entry is chosen from C, the field of
complex numbers. We denote the encryption of a length-𝑛 vector
x, i.e. the ciphertext, by JxK. All arithmetic operations on plaintexts
are component-wise; the entries of the vector x + y (resp. x · y) are
1The code can be found at https://github.com/bu-icsg/SimFHE

Table 1: CKKS FHE Parameters and their description.

Param Description

𝑁 Number of coefficients in a polynomial in the ciphertext ring.
𝑛 𝑁 /2, number of plaintext elements in a ciphertext.
𝑄 Full modulus of a ciphertext coefficient.
𝑞 Machine word sized prime modulus and a limb of𝑄 .
Δ Scaling factor of a CKKS plaintext.
𝑃 Product of the additional limbs added for the raised modulus.
𝐿 Maximum number of limbs in a ciphertext.
ℓ Current number of limbs in a ciphertext.
dnum Number of digits in the switching key.
𝛼 ⌈ (𝐿 + 1)/dnum⌉. Number of limbs that comprise a single

digit in the key-switching decomposition. This value is fixed
throughout the computation.

𝛽 ⌈ (ℓ + 1)/𝛼 ⌉. An ℓ-limb polynomial is split into this number
of digits during base decomposition.

fftIter The number of iterations in the homomorphic evaluation of
the DFT in bootstrapping.

MAD: Memory-Aware Design Techniques for Accelerating
Fully Homomorphic Encryption MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

the component-wise sums (resp. products) of the entries of x with
the corresponding entries of y. Table 2 gives a complete description
of the core underlying API implemented by CKKS. We use a similar
notation as [24].

Polynomial Rings and Ciphertexts: A CKKS ciphertext is a
pair of elements in the polynomial ring R𝑄 := Z𝑄 [𝑥]/(𝑥𝑁 + 1).
Each element of this ring is a polynomial with degree 𝑁 − 1 and
coefficients in Z𝑄 . For a messagem ∈ C𝑛 , we denote its encryption
as JmK = (am, bm) where am and bm are the two polynomials that
comprise the ciphertext. We omit the subscript m when there is
no cause for confusion. To give a high-level intuition for the sizes
of these parameters, the coefficient modulus 𝑄 considered in this
work is typically between a few hundred and a few thousand bits.
The polynomial modulus degree is a power of two and it is 𝑁 = 217
in this work. These large sizes are required to maintain the security
of the underlying Ring-Learning with Errors assumption. We refer
the reader to [2, 28] for more information about the Ring-Learning
with Errors problem and secure parameters.

Residue Number System:Often, the scalar values comprising a
CKKS ciphertext are on the order of thousands of bits. To efficiently
compute on such large numbers, we use the residue number system
(RNS), also called the Chinese remainder representation. We select
the coefficient modulus 𝑄 =

∏ℓ
𝑖=1 𝑞𝑖 , where each 𝑞𝑖 is a prime

number that fits in a standard machine word (less than 64 bits).
We represent a scalar 𝑥 ∈ Z𝑄 as ℓ integers modulo each of the
𝑞𝑖 , making use of the isomorphism between Z𝑄 and the product
group Z𝑞1 ⊗ . . . ⊗ Z𝑞ℓ . We call the set B := {𝑞1, . . . , 𝑞ℓ } an RNS
basis, where each 𝑞𝑖 is a limb of𝑄 . Thus, we can operate over values
in Z𝑄 without any native support for multi-precision arithmetic.
A CKKS ciphertext consists of two ring elements, so the size of a
CKKS ciphertext is 2𝑁ℓ machine words.

Changing the RNS Basis: TheModUp andModDown opera-
tions (described later in this section) in CKKS require changing the
RNS basis of a value 𝑥 ∈ Z𝑄 . Below we briefly explain the process
for extending an RNS basis [10, 15] using Equation (1). This equa-
tion takes in an RNS representation of a value 𝑥 ∈ Z𝑄 as a length-ℓ
vector of scalars [𝑥]B = ([𝑥]𝑞1 , [𝑥]𝑞2 , . . . , [𝑥]𝑞ℓ), where [𝑥]𝑞𝑖 ≡ 𝑥

(mod 𝑞𝑖). It outputs 𝑥 mod 𝑝 , where 𝑝 is a new modulus in an
extended RNS basis.

[𝑥]𝑝 =

ℓ∑︁
𝑖=1

[
[𝑥]𝑞𝑖 · 𝑄̃𝑖

]
𝑞𝑖
·𝑄∗𝑖 (mod 𝑝) (1)

= NewLimb([𝑥]B , 𝑝)

where 𝑄∗
𝑖
= 𝑄/𝑞𝑖 and 𝑄̃𝑖 = (𝑄∗

𝑖
)−1 (mod 𝑞𝑖). We refer to Equa-

tion (1) as NewLimb. To establish terminology, we note that this
equation operates over all limbs ([𝑥]𝑞1 , [𝑥]𝑞2 , . . . , [𝑥]𝑞ℓ) of a single
slot or coefficient of the scalar 𝑥 ∈ Z𝑄 . This is in contrast with
operations described below that operate over a fixed limb across
all of the elements of some vector in Z𝑁

𝑄
.

Polynomial Representation: To enable fast polynomial mul-
tiplication, by default, we represent all polynomials as a series of
𝑁 evaluations at fixed roots of unity. This allows polynomial mul-
tiplication to occur in 𝑂 (𝑁) time. We refer to this representation
as the evaluation representation. This is in contrast to the coeffi-
cient representation of a polynomial, which is simply the vector

Table 2: CKKS Primitive Operations.

Operation Output RescaleKeySwitchDescription

PtAdd(JxK , y) Jx + yK No No Adds a plaintext vector
to an encrypted vector.

Add(JxK , JyK) Jx + yK No No Adds two encrypted
vectors.

PtMult(JxK , y) Jx · yK Yes No Multiplies a plain-
text vector and an
encrypted vector.

Mult(JxK , JyK) Jx · yK Yes Yes Multiplies two en-
crypted vectors.

Rotate(JxK , 𝑘) J𝜙𝑘 (x)K No Yes Rotates a vector by 𝑘

positions. Permutation
of slots is denoted by
Automorph.

Conjugate(JxK) JxK No Yes Computes the complex
conjugate of x.

Table 3: Data dependencies and access patterns.

Operation Interaction Independent Access pattern

NTT, iNTT Slots Limbs limb-wise
NewLimb Limbs Slots slot-wise

of its coefficients. The RNS basis change operations must be per-
formed over a polynomial’s coefficient representation. The addition
of two polynomials is 𝑂 (𝑁) in both the coefficient and the evalu-
ation representation. Moving between representations requires a
number-theoretic transform (NTT) or inverse NTT, which is the
finite field version of the fast Fourier transform (FFT) and takes
𝑂 (𝑁 log𝑁) time and𝑂 (𝑁) space for a degree-(𝑁 − 1) polynomial.
The NTTs are always performed over the limb moduli; switching
the representation of a full ring element requires ℓ NTTs over a
machine-word-sized modulus.

Data access pattern: Some operations in CKKS such as NTT
and iNTT operate on data within the slots of the same limb, inde-
pendent of the other limbs in the ciphertext. On the other hand, RNS
basis change operations in NewLimb require interaction between a
certain number of slots across various limbs. This requires having
a few slots from multiple limbs in on-chip memory. To account for
this, we define two different types of data access patterns. For the
functions that operate over all slots of a fixed limb (such as NTT
and iNTT), we define the data access pattern as limb-wise. For the
functions that operate over various limbs of a fixed slot (such as
NewLimb in eq. (1)), we define the data access pattern as slot-wise.
A summary of this is given in Table 3.

RNS Basis Change Operations: In CKKS, the source of the ori-
entation change of the data access is in the RNS basis change oper-
ations; all other operations operate limb-wise. We now give the two
primary RNS operations in CKKS. We abuse notation a bit to accom-
modate vectors over Z𝑁

𝑄
. For a vector x = (𝑥1, . . . , 𝑥𝑁), we write

[x]𝑞 = ([𝑥1]𝑞, . . . , [𝑥𝑁]𝑞). Similarly, we write NewLimb([x]B , 𝑝)
as NewLimb applied to each element of x in parallel.

The first operation is ModUp, which extends the RNS basis to
include new primes. In Algorithm 1, we define the operation to

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Agrawal et al.

take the evaluation representation of a polynomial as input and
to output this same representation. This highlights the change of
orientation required for these operations.

The second operation is ModDown. This is a bit more compli-
cated than simply reducing the RNS basis. Instead, ModDown can
be viewed as a division operation where the denominator is the
product of the dropped limbs. More specifically, if the input to
ModDown is [x]B∪B′ , let 𝑃 =

∏
𝑝∈B′ 𝑝 be the product of the mod-

uli of the dropped limbs. The output of ModDown is [𝑃−1 · x]B .
This is given in Algorithm 2 [10]. As with ModUp, this algorithm
operates over polynomials where the inputs and outputs are in
evaluation representation.

2.2 Memory Bottlenecks of CKKS
In this section, we explain the sources of the memory bottlenecks
of CKKS. Broadly, these bottlenecks arise when adjacent operations
require different orientations of the data.

Implications of a Small Cache: We begin with the observa-
tion that secure CKKS parameters result in large polynomials. An
example of secure parameters that achieve a 128-bit security level
is 𝑁 = 217, 𝐿 = 35, which gives a total ciphertext size of ∼73.4 MB.
Typical chips designed today have small on-chip memory (about
1-32 MB), meaning that the on-chip memory likely cannot even
fit a single element of R𝑄 , let alone a full ciphertext. Therefore, to
switch the view of the ring element between limb-wise & slot-wise
format, DRAM transfers are required. A high number of data ac-
cess pattern switches will result in more frequent DRAM transfers.
In the remainder of this section, we describe CKKS subroutines
that require these transitions. These subroutines, called Rescale
and KeySwitch, are denoted in Table 2. Every "Yes" in Table 2
indicates that a memory-intensive operation is required to
implement the primitive operation.

Rescale: Shrinking the Scaling Factor: Since CKKS encrypts
values in C𝑛 , the messages must be multiplied by a scaling factor Δ
during encryption. This scaling factor is usually the size of one of
the limbs of the ciphertext, which is slightly less than a machine
word. In both the PtMult andMult implementations, the multipli-
cation of the encoded messages results in the product having a
scaling factor of Δ2. Before these operations can complete, we must
shrink the scaling factor back down to Δ (or at least a value very
close to Δ). To shrink the scaling factor, we divide the ciphertext by
one of its limbs (which are chosen to be close to Δ) and round the
result to the nearest integer. This operation, called Rescale, keeps
the scaling factor of the ciphertext roughly the same throughout the
computation. Note that Rescale also divides the coefficient modulus
itself, reducing the number of limbs in the modulus. The Rescale
operation is a specialized implementation of ModDown. For an
input basis {𝑞1, . . . , 𝑞ℓ }, Rescale is equivalent to ModDown with

Algorithm 1ModUpB,B∪B′ ([x]B) = [x]B∪B′
1: for 𝑞𝑖 ∈ B do [x]𝑞𝑖 ← iNTT([x]𝑞𝑖) ⊲ limb-wise

2: for 𝑝 𝑗 ∈ B′ do [x]𝑝 𝑗
← NewLimb𝑗 ([x]B , 𝑝 𝑗) ⊲ slot-wise

3: for 𝑝 𝑗 ∈ B′ do [x]𝑝 𝑗
← NTT([x]𝑝 𝑗

) ⊲ limb-wise

4: return [x]B∪B′ ⊲ No need to do NTT on the input limbs.

Algorithm 2 ModDownB∪B′→B ([x]B∪B′) = [𝑃−1 · x]B
1: for 𝑞 ∈ B ∪ B′ do [x]𝑞 ← iNTT([x]𝑞) ⊲ limb-wise

2: for 𝑞𝑖 ∈ B do
3: [x̂]𝑞𝑖 ← NewLimb𝑗 ([x]B′ , 𝑞𝑖) ⊲ slot-wise
4: [x]𝑞𝑖 ← 𝑃−1 · ([x]𝑞𝑖 − [x̂]𝑞𝑖) (mod 𝑞𝑖) ⊲ 𝑃−1 is mod 𝑞𝑖 .
5: for 𝑞𝑖 ∈ B do [x]𝑞𝑖 ← NTT([x]𝑞𝑖) ⊲ limb-wise

6: return [x]B

B = {𝑞1, . . . , 𝑞ℓ−1} and B′ = {𝑞ℓ }. In Table 2, we denote the opera-
tions that require Rescale. For a more formal description, we refer
the reader to [10]. Naively, for each Rescale we must perform an
orientation switch of the R𝑄 element. However, in Section 3.2 we
show how to combine this orientation switch with other operations.

KeySwitch: Changing the Decryption Key: In both the Mult
and Rotate implementations, there is an intermediate ciphertext
with a decryption key that differs from the decryption key of the
input ciphertexts. To change this new key back to the original key,
we perform a KeySwitch operation [7]. This operation takes in a
switching key ksks→s′ and a ciphertext JmKs that is decryptable
under a secret key s. The output of the KeySwitch operation is a
ciphertext JmKs′ that encrypts the same message but is decryptable
under a different key s′.

While the use of the KeySwitch operation differs slightly be-
tweenMult and Rotate, both functions require the same basic op-
eration. This operation (see Algorithm 3) takes in a polynomial
x ∈ R𝑄 and produces an encryption of x · s under some new secret
key s′. As an intermediate value, KeySwitch produces a tuple of
the form J𝑃 · x · sKs′ ∈ R2𝑃𝑄 , which is an "encryption" of 𝑃 · x · s
under the secret key s′ and over the modulus 𝑃𝑄 . This intermediate
value is very important, as we show in Section 3.2 how we can
work directly with this value rather than immediately performing
aModDown operation.

We follow the structure of the switching key in the work of Han
and Ki [19], where the switching key, parameterized by a length
dnum, is a 2 × dnum matrix of polynomials.

ksk =

(
a1 a2 . . . adnum
b1 b2 . . . bdnum

)
∈ R2×dnum𝑃𝑄 (2)

The KeySwitch operation requires that a polynomial be split into
dnum "digits," then multiplied with the switching key. We define
the functionDecomp that splits a polynomial into 𝛽 ≤ dnum digits,
where 𝛽 is defined in Table 1. Note that on line 3 of Algorithm 3 the
last columns of the kskmatrix are simply dropped when 𝛽 < dnum.

We conclude by noting that in KeySwitch we have to switch
orientation at two places: theModUp functions on line 2 and the
ModDown functions on line 4. This makes KeySwitch the most
expensive subroutine in the implementation of the CKKS API. The
primary focus of our caching and algorithmic optimizations is to
reduce the overhead of KeySwitch.

As discussed in Section 2.2, the ciphertext modulus of a CKKS
ciphertext shrinks with each multiplication. In order to compute
indefinitely on a CKKS ciphertext, we must grow the ciphertext
modulus without also growing the noise. This is not as simple as per-
forming aModUp function. The CKKS bootstrapping procedure [9]
begins with a ModUp operation, which gives the new plaintext as

MAD: Memory-Aware Design Techniques for Accelerating
Fully Homomorphic Encryption MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

Algorithm 3 KeySwitch(x, ksks→s′) → Jx · sKs′
1: x̂1, . . . , x̂𝛽 := Decomp𝛽 (x) ⊲ Splits x into 𝛽 digits.
2: for 1 ≤ 𝑖 ≤ 𝛽 do −→x [𝑖] := ModUp(x̂𝑖) ⊲

−→x ∈ R𝛽

𝑃𝑄

3: (û, v̂) := ksk · −→x ⊲ (û, v̂) = J𝑃 · x · sKs′ ∈ R2𝑃𝑄
4: (u, v) := (ModDown(û),ModDown(v̂))
5: return (u, v) ⊲ (u, v) = Jx · sKs′ ∈ R2𝑄

Δ ·m + k𝑞 where 𝑞 is the modulus for the input ciphertext and k is
some polynomial with small integer coefficients. The primary goal
of the bootstrapping operation is to homomorphically evaluate the
modular reduction operation modulo 𝑞 on this plaintext, returning
the plaintext back to Δ ·m.

The CKKS bootstrapping algorithm follows a general structure
that has remained relatively static in the literature [4, 8, 9, 17, 19]
over the past few years. This structure has three main components:
a linear operation, a polynomial approximation of the modular
reduction function followed by another linear operation. The linear
operations in bootstrapping require homomorphically evaluating
the DFT on the encrypted data so that we perform modulus reduc-
tion on the coefficient representation of plaintext, rather than the
evaluation (or slot) representation. The first of these DFT operations
is called CoeffToSlot and the second is called SlotToCoeff. These
DFT operations consist of a number of plaintext matrix-vector prod-
ucts, which we denote by PtMatVecMult. The parameter fftIter
determines the number of matrix-vector products required; higher
the fftIter, lower the dimension of each matrix. In between these
two DFT operations is an approximation of the modular reduc-
tion function that consists of a polynomial evaluation followed by
an exponentiation. We give a high-level pseudocode for the boot-
strapping algorithm in Algorithm 4. For further details on DFT,
polynomial approximation and evaluation, we refer the readers to
[4, 19].

2.3 Arithmetic Intensity Analysis
In Table 4, we present the results of our arithmetic intensity analysis
for CKKS operations using SimFHE (details in Section 4.1). These
values consider caches that are smaller than one element of the
ring R𝑄 but large enough to hold a maximum 1 or 2 limbs. One
immediate observation that we can make from this table is that all
individual CKKS operations (defined in Table 2) have arithmetic
intensities of <1 Op/byte and require large working sets in on-
chip memory. This indicates that any implementation using CKKS
operations as a black box will suffer from a memory bottleneck.

However, we note that improving arithmetic intensity does not
necessarily equate to an improvement in performance. This is be-
cause some of our optimizations (see the Mult improvement in
Section 3.2) such asModDown merge andModDown hoisting ac-
tually decrease the arithmetic intensity by reducing compute over-
head more than the memory requirement, but these optimizations
still improve the overall bootstrapping performance. This is be-
cause these two operations perform expensive NTT operations
(having O(𝑁 log𝑁) complexity). Thus, any reduction in the num-
ber of ModDown operations leads to a significant reduction in the
compute, which improves the overall bootstrapping performance.

Algorithm 4 Bootstrap(JxK) = JxK

1: (a, b) := JxK
2: JtK := ModUp(a, b)
3: for 𝑖 from 1 to fftIter do ⊲ CoeffToSlot phase.
4: JtK← PtMatVecMult(M𝑖 , JtK)
5: JtK← PolyEval(JtK ,mod(·)) ⊲ Approximate mod reduction.
6: for 𝑖 from 1 to fftIter do ⊲ SlotToCoeff phase.
7: JtK← PtMatVecMult(M𝑖 , JtK)
8: return JtK

3 MAD TECHNIQUES
In this section, we present our MAD techniques for accelerating the
CKKS bootstrapping and applications in general. These techniques
are designed for a variety of cache2 sizes, ranging from sizes that can
only cache a single limb to caches that can fit𝑂 (𝛼) limbs (where 𝛼 is
defined in Table 1). We first describe our caching optimizations that
reorder the operations to maximize the utilization of data in various-
sized caches. Then we describe our main algorithmic optimizations
that focus on reducing the number of times wemust switch between
the limb-wise and slot-wise orientations during various operations.
We would like to note that the caching optimizations only reduce
the number of accesses to the main memory while algorithmic
optimizations reduce the orientation switch and the number of
operations (expensive NTT operations) in turn reducing the main
memory accesses.

3.1 Caching Optimizations
Our MAD techniques can support a variety of cache sizes. Our
baseline implementation, against which we compare our proposed
work, is based on the GPU-accelerated CKKS bootstrapping work
of Jung et al. [20]. This work is the closest to our setting since it is
a small-cache acceleration of CKKS bootstrapping. We accurately
implement the bootstrapping work of Jung et al. [20] in SimFHE us-
ing the same parameters as in [20], and we confirmed with SimFHE
that these parameters maximize the bootstrapping throughput (see
Table 5) of this baseline implementation. Note that we use these
same parameters for all our caching optimizations.

We describe our caching optimizations by grouping them into
three categories. These categories represent the size of the cache
with respect to the parameters of the CKKS scheme. More specifi-
cally, the more ciphertext limbs a cache can store, the more opti-
mizations it can leverage. The caching optimizations do not impact
the number of operations in bootstrapping. Essentially, the number
of compute operations remains constant, but we reduce the number
number of DRAM transfers required for bootstrapping.

Caching 𝑂 (1) Limbs: This first optimization is for a cache that
can store one limb of the ciphertext. The size of the cache considered
for this optimization is 1 MB as the size of a ciphertext limb is ∼1
MB. Intuitively, in this optimization, we compute as many sub-
operations within an operation on a single limb before writing it
back to the main memory. That way we avoid reading and writing
a limb from and to the main memory multiple times. We include
caching 𝑂 (1) optimization at several places in our bootstrapping

2Although we use on-chip memory and cache interchangeably, we imply on-chip
memory as our optimizations are agnostic of the underlying compute platform.

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Agrawal et al.

Table 4: Total operations in giga-ops, total DRAM transfers in GB, and arithmetic intensity (AI) in ops/byte. Here log(𝑁) = 17,
ℓ = 35, dnum = 3. The cache size is smaller than a single element of the ring R𝑄 but large enough to hold a constant number of
limbs. Rotate and Conjugate have identical implementations.

PtAdd Add PtMult Decomp ModUp KSKInnerProd ModDown Mult Automorph Rotate Conjugate Bootstrap

Operations 0.0046 0.0092 0.2747 0.0092 0.2847 0.0629 0.3000 1.8333 0 1.5310 1.5310 149.546

DRAM Transfers 0.1101 0.2202 0.3282 0.0734 0.1510 0.4530 0.1877 1.9293 0.1468 1.5645 1.5645 207.982

AI 0.04 0.04 0.84 0.12 1.88 0.13 1.59 0.95 0 0.98 0.98 0.72

implementation that compute more aggressively on a single limb
as much as possible.

Out of the several operations that can leverage this optimization,
below we present a concrete example of our 𝑂 (1) optimization for
the Rotate operation. Say we want to Rotate a ciphertext having
35 limbs. As shown in Figure 1 (a), naïvely, we will begin with
Automorph sub-operation on all 35 limbs, requiring 35 limb reads
and writes as our cache can store only a single limb at a time.
Then we will perform the Decomp sub-operation, which will again
require 35 more limb reads and writes. We can keep progressing for-
ward with the subsequent sub-operations, incurring 245 ciphertext
limb reads and writes for a single Rotate operation.

We propose to eliminate these intermediate reads and writes by
greedily performing as many sub-operations as possible on a single
limb before writing it back to the main memory. Therefore, we
read the first limb of the ciphertext and then perform Automorph,
Decomp, and iNTT at once. The NewLimb sub-operation requires
multiple slots across limbs (orientation switch), and so cannot be
performed just using the current limb. So we write the current
limb to the main memory (see Figure 1 (b)). We then perform the
Automorph, Decomp, and iNTT sub-operations on the remaining
limbs (one at a time) of the ciphertext. Our approach avoids 140
DRAM reads and writes per ciphertext, which equates to avoiding
124 MB of data transfer for a ciphertext. We would like to note that
we perform the Rotate operation multiple times when executing
any CKKS-based FHE application and we can apply our caching

Figure 1: Conceptual viewof caching𝑂 (1) limbs optimization;
(a) Naïve approach for Rotate operation on a ciphertext with
35 limbs requires 105 DRAM reads and 105 DRAM writes.
(b) Our proposed approach for Rotate operation requires 35
DRAM reads and 35 DRAM writes.

Figure 2: Cumulative impact of our caching optimizations
when performing bootstrapping operation. Each successive
optimization builds on top of the earlier ones. The baseline
parameters are given in Table 5.

𝑂 (1) limb optimization every time we perform the Rotate oper-
ation. In addition to the Rotate operation, the caching 𝑂 (1) limb
optimization can also be applied to PtMult,Mult, and Conjugate.

Figure 2 summarizes the reductions in the DRAM transfers for
the bootstrapping operation when incrementally applying the dif-
ferent caching optimizations that we have presented in this Section.
With the 𝑂 (1)-limb caching optimization, we observe a 15% re-
duction in overall DRAM transfers during a single bootstrapping
operation. This reduction in data transfer includes a reduction in
limb reads and writes by 14.3% and 23.7%, respectively.

Caching 𝑂 (𝛽) Limbs: The next optimization considers a cache
size that is 𝑂 (𝛽), where 𝛽 is the number of digits generated from
a polynomial key switching operation. We refer readers to Han
and Ki [19] for more details about the key-switching procedure.
Note that Han and Ki [19] do not propose the optimization that we
describe below. Our parameters where 𝛽 ≤ dnum = 3 amount to
6 MB of cache. Below we explain the optimization idea using an
example.

Consider thePtMatVecMult operation in bootstrapping, inwhich
we need to perform many Rotate operations on a ciphertext. There
are 𝛽 digits that are produced as the output of the initial ModUp
operations. Naively, for each rotation, we would read the limbs for
each of the 𝛽 digits, rotate them, then compute the inner product
with the key-switching key. Given that we have space in the cache
for 𝛽 digits, we can instead pull in a single limb from each of the 𝛽
digits’ output by the ModUp operation, then perform the Rotate
operation on each limb and then calculate the inner product of
limbs with the switching key limbs all at once. This allows us to

MAD: Memory-Aware Design Techniques for Accelerating
Fully Homomorphic Encryption MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

read the outputs of the ModUp function only once, regardless of
the number of rotations. With this optimization, we can reduce the
number of limb accesses from the main memory by at least 3× (as
𝛽 equals 3) during key switching for the PtMatVecMult operation.

For a single bootstrapping operation, as we move from caching
𝑂 (1) limb optimization to caching 𝑂 (𝛽)-limbs optimization (see
𝛽-limb Cache in Figure 2), we have an additional 5 MB on-chip
memory. Using this additional memory, compared to the 𝑂 (1)-
limb optimization we can reduce the number of DRAM transfers
by ∼4.4% due to the 8.3% reduction in the number of ciphertext
limb reads. In comparison to the baseline, with the 𝑂 (𝛽)-limbs
optimization, we reduce the number of DRAM transfers by 22% due
to the 21.4% reduction in the number of ciphertext limb reads. Note
that the number of ciphertext limb writes remains the same here.

Caching 𝑂 (𝛼) Limbs: For this optimization, we assume that
we have a large cache that can hold 𝑂 (𝛼) limbs, where 𝛼 is the
number of limbs in a single digit after the digit is output by the
Decomp function for key switching. In practice, this optimization
requires a cache size that is only slightly larger than the size of
2𝛼 limbs, which is about 27 MB (calculated using as 2𝛼 + 3 MB
where 𝛼 = ⌈𝐿 + 1/dnum⌉ = 12 as 𝐿 = 35 and dnum = 3). With
this cache size assumption, we observe a significant decrease in
the total number of ciphertext limb reads and writes from/to the
main memory. This is because all of the slot-wise basis conversion
operations inModUp (line 2 in Algorithm 1) andModDown operate
over 𝛼 limbs. If we can fit these 𝛼 limbs in the cache, then we can
generate new limbs in their entirety within the cache. With each
new limb in the cache, we can perform the NTT on the limb, which
completes the basis change operation and writes this limb out to
memory. This lets us generate all new limbs in evaluation format
without having to write them out in slot-wise format back to main
memory and then read them back from main memory in limb-wise
format.

For a single bootstrapping operation, as we move from 𝑂 (𝛽)-
limbs optimization to𝑂 (𝛼)-limbs optimization, we reduce the num-
ber of DRAM transfers by ∼26%, which includes a 26% and 44%
reduction in the ciphertext limb reads and writes, respectively. In
comparison to the baseline, we observe that with 𝑂 (𝛼)-limbs opti-
mization, DRAM transfers reduce by 44%, which includes a 42% and
57% reduction in the ciphertext limb reads and writes, respectively.

Re-ordering Limb Computations: The ModDown steps in
the KeySwitch and bootstrapping drop 𝛼 limbs. However, we need
to perform additional operations on these 𝛼 limbs before they get
dropped in the ModDown step. In our re-ordering optimization,
we propose computing these 𝛼 limbs first so that the additional
operations can be performed immediately. This re-ordering limb
computation is feasible on top of 𝑂 (𝛼)-limbs optimization as we
have enough on-chip memory to cache these 𝛼 limbs so as to avoid
having to write and then read these limbs from main memory. Once
we have the 𝛼 limbs, we can begin the ModDown operation by
computing the output of the NewLimb. Then, for each subsequent
limb that is computed, we can immediately combine it with the
NewLimb output, in turn avoiding more DRAM transfers.

For a single bootstrapping operation, as we move from 𝑂 (𝛼)-
limbs optimization to limb re-order optimization (see limb re-order
in Figure 2), we observe that the DRAM transfers reduce by ∼7%,
which includes a 7% and 16% reduction in the ciphertext limb reads

Algorithm 5 PModUp([x]B) → [𝑃 · x]B∪B′
1: 𝑃 :=

∏
𝑝∈B′ 𝑝 and 𝑄 :=

∏
𝑞∈B 𝑞

2: for 𝑞𝑖 in B do [y]𝑞𝑖 ← 𝑃 · [𝑥]𝑞𝑖 mod 𝑞𝑖

3: for 𝑝 𝑗 ∈ B′ do [y]𝑝 𝑗
← 0

return [y]B∪B′ ⊲ y = 𝑃 · x mod 𝑃𝑄

and writes, respectively. In comparison to the baseline, we observe
that with re-ordering limb optimization, DRAM data transfers re-
duce by 52%, which includes a 46% and 64% reduction in the cipher-
text limb reads and writes, respectively.

After applying our caching optimizations, we observe that the
bootstrapping arithmetic intensity changes from 0.72 to 1.25, which
is an improvement by ∼1.7×. As the caching optimizations do not
impact the switching key reads, they remain constant for all of
the caching optimizations. However, they contribute to the total
transfers from DRAM and thus impact the overall bootstrapping
arithmetic intensity.

3.2 Algorithmic Optimizations
We now present the algorithmic optimizations for various opera-
tions in CKKS bootstrapping. These optimizations are all centered
around the key idea of performing linear functions in the raised ba-
sis. Belowwe first describe this idea in detail, and then describe how
we can apply this idea to several operations in CKKS bootstrapping.

Linear Functions in the Raised Basis: The KeySwitch opera-
tion (see Algorithm 3 in Section 2.2) changes the decryption key
from s to s′ by taking in an input polynomial a and producing a
ciphertext Ja · sK ∈ R2

𝑄
. This ciphertext is produced by perform-

ing ModDown on the ciphertext J𝑃 · asK ∈ R2
𝑃𝑄

. We note that
an element b ∈ R𝑄 can be efficiently converted into an element
𝑃 · b ∈ R𝑃𝑄 . This is given in Algorithm 5, denoted by PModUp.
This allows the canceling of the a · s term to occur over R𝑃𝑄 . If m
is the message encrypted by the original ciphertext, this change
leaves us with encryption of 𝑃 ·m, where the ciphertext is now in
R2
𝑃𝑄

.
The key observation here is that this ciphertext remains addi-

tively homomorphic. This means that we can perform Add and
PtMult in the raised basis before needing to perform a ModDown
step. For any CKKS application where the inputs to a linear function
are the immediate outputs of a KeySwitch operation, this optimiza-
tion can be applied.

MergingModDown inMult: A conceptual view of the Merging
ModDown inMult optimization is presented in Figure 4. This opti-
mization is a straightforward application of the above-introduced
technique (PModUp operation). In the standard CKKS Mult imple-
mentation (see Figure 4 (a)), there is a KeySwitch followed by a
Rescale operation (also known asModDown operation) to reduce
the plaintext scaling factor Δ. We can save ℓ multiplications per
coefficient if we complete the KeySwitch operation in the raised
basis by lifting Add above the first ModDown operation within
KeySwitch (see Figure 4 (b)). Then we reduce the ciphertext polyno-
mials by both 𝑃 and the scaling factor Δ using a single ModDown
operation (see Figure 4 (c)), in turn, reducing the number of orien-
tation switches and the expensive NTT operations.

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Agrawal et al.

Figure 3: Cumulative impact of our algorithmic optimiza-
tions. Each successive optimization builds on top of the ear-
lier ones. For the baseline case we apply all the memory
optimizations from Section 3.1. For all designs we use the
Best-case Parameters from Table 5.

Figure 4: Conceptual view of mergingModDown operation in
Mult; (a) Standard sequence of sub-operations inMult oper-
ation that requires us to perform twoModDown operations,
(b) Modified sequence of operations inMult that brings two
ModDown operations adjacent by performing Add in raised
basis, and (c) Optimized sequence of operations in Mult that
performs singleModDown.

We summarize the effects of various algorithmic optimizations
in Figure 3, where the baseline includes the caching optimizations
from the previous section. For a single bootstrapping operation, as
we merge ModDown in Mult (see ModDown Merge in Figure 3),
we observe that the overall compute reduces by 6%. However, the
number of DRAM transfers remains the same as we have enough
on-chip memory to perform the Rescale operation immediately
following the ModDown operation on a limb without writing it
back to the main memory.

Hoisting ModDown in PtMatVecMult: A conceptual view of
HoistingModDown in PtMatVecMult optimization is presented in
Figure 5. This optimization is a good example of how a linear func-
tion can be applied to many outputs of Rotatewithout performing a
ModDown operation for each output. The PtMatVecMult function
can be written as:

JyK←
∑︁
𝑖

PtMult(Rotate(JmK , 𝑖, ksk), x𝑖)

Figure 5: Conceptual view of hoisting ModDown opera-
tion in PtMatVecMult; (a) Sequence of sub-operations per-
formed 𝑟 times in back-to-back Rotate operation within
PtMatVecMult, (b) Modified sequence of sub-operations in
Rotate where ModDown is hoisted to perform only single
ModDown while performing many Rotate operations, and (c)
OurModDown hoisting optimization combined with an exist-
ingModUphoisting optimization to perform singleModDown
andModUp operations while performing back to back Rotate
operations in PtMatVecMult.

The naïve implementation of this operation is to complete the
Rotate (where each Rotate contains a KeySwitch) on a ciphertext
for each index 𝑖 before multiplying it by the plaintext x𝑖 . We propose
hoisting3 the ModDown operation in KeySwitch whenever back-
to-back Rotate operations are to be performed (as shown in Figure 5
(a)). Thus, using our optimization (as shown in Figure 5 (b)), we need
to perform only two ModDown steps over this entire operation,
which reduces the two elements in the ciphertext encrypting y.
Recall that every KeySwitch operation (see Algorithm 3) performs
twoModDown operations.

In addition, when combined with the standard ModUp hoisting
for the rotations [16, 22] (as shown in Figure 5 (c)), the number
of RNS operations (either ModUp or ModDown) required by our
PtMatVecMult is just three (one ModUp and two ModDown op-
erations), regardless of the dimension of the matrix. More specifi-
cally, with this algorithmic optimization, the number of orientation
switches reduces to 18 (fftIter × 3, fftIter = 6 from Table 5) in our
optimized PtMatVecMult as compared to 44 orientation switches
required in the baseline algorithm [20]. The baseline algorithm uses
the baby step giant step algorithm for FFT, wherein it performs an
orientation switch for each baby step as well as each giant step,
leading to a total of 44 orientation switches for their parameter set.

For a single bootstrapping, as we move from mergeModDown
inMult optimization to hoistingModDown in PtMatVecMult opti-
mization (see ModDown Hoisting in Figure 3), we observe that the
overall compute reduces by 34% and the number of DRAM trans-
fers for the ciphertext limbs reduce by 19%. We would like to note
that theModDown hoisting increases the number of DRAM access
corresponding to additional switching key reads by 25%. This is
because we use theModDown hoisting optimization in the context
of a baby step giant step algorithm that implements PtMatVecMult.
The trade-off in this algorithm is that a larger baby step and a

3In FHE, if the same primitive operation is going to be performed 𝑟 times successively,
there may be an opportunity to perform one or more of the common sub-operations
across the 𝑟 instances upfront just once. This is referred to as hoisting.

MAD: Memory-Aware Design Techniques for Accelerating
Fully Homomorphic Encryption MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

smaller giant step means more DRAM reads for the switching keys,
while a smaller baby step and a larger giant step means more DRAM
reads for the ciphertexts as the baby step ciphertexts must be read
in for each giant step. We chose the first option which, despite the
increase in key reads, reduces the overall DRAM reads.

KeySwitch Key Compression:We briefly note one additional
optimization unrelated to PModUp that is very simple but has a
large impact on the number of DRAM transfers and also on the opti-
mal CKKS scheme parameters. The first polynomial of all switching
keys is a uniformly random ring element. Rather than transferring
the entire polynomial (large ring element) from DRAM, we use a
PRNG to generate this ring element. This allows us to only transfer
the short PRNG key in place of the first switching key polynomial,
which effectively reduces theKeySwitch key sizes by a factor of two.
This is a folklore technique often used to reduce communication
when sending ciphertexts or keys over a network. To the best of
our knowledge, we are the first to use this optimization to reduce
the memory bandwidth for hardware acceleration of FHE and the
first to analyze this optimization alongside the other optimizations
proposed in this section.

For a single bootstrapping operation, as we move from hoist-
ing ModDown in PtMatVecMult optimization to key compression
optimization (see Key Compression in Figure 3), we observe that
the overall compute and the number of DRAM transfers for the ci-
phertext limbs remain unchanged. However, the number of DRAM
transfers for the key reads reduce by 50%.

Broadly, as each algorithmic optimization gets applied, the num-
ber of compute operations and theDRAM transfers reduce.ModDown
merge andModDown hoisting optimizations reduce the compute
more than they reduce the number of memory transfers, which
reduces the overall arithmetic intensity of bootstrapping. However,
as these two optimizations reduce the expensive NTT operations
(having 𝑂 (𝑁𝑙𝑜𝑔𝑁) complexity), any reduction in the number of
ModDown operations leads to a significant improvement in the
compute performance, which improves the overall bootstrapping
performance. We observe an overall 3× improvement in the boot-
strapping arithmetic intensity with our final key compression opti-
mization when compared to the baseline benchmark.

4 EVALUATION
In this section, we compare our work with prior art using the
bootstrapping operation and two ML workloads.

4.1 SimFHE: Our Simulator
We begin by briefly describing SimFHE, our custom simulator that
we use to benchmark the compute and memory requirements of a
CKKS-based application. Any CKKS-based application consists of
various complex operations, including the bootstrapping operation,
that can be performed using the primitive operations listed in Ta-
ble 2. SimFHEmodels these primitive operations by keeping track of
both individual compute operations as well as the DRAM transfers
for a given cache size. This enables us to benchmark the compute
and memory requirements of individual complex operations as well
as the CKKS-based application as a whole.

An execution of primitive operations and bootstrapping in SimFHE
is parameterized by the CKKS scheme parameters, the number of
functional units, the size of the on-chip memory, and the MAD
optimizations to include in bootstrapping. SimFHE tracks compute

Table 5: Baseline and Our Optimal Bootstrapping Parameters.
Here 𝐿 parameter = #limbs in the ciphertext after the initial
ModUp procedure in Bootstrap. The fftIter parameter is the
#PtMatVecMult iterations in the CoeffToSlot and SlotToCoeff
phases in Bootstrap.

𝑛 𝑞 𝐿 dnum fftIter

Baseline [20] 216 54 35 3 3

Ours 216 50 40 2 6

at the modular arithmetic level, i.e., in terms of modular multiplica-
tions and additions. SimFHE tracks DRAM transfers based on the
data size and the available cache size instead of directly tracking
cache hits or misses through actual data reads. SimFHE implements
our MAD optimizations in a modular fashion, allowing us to toggle
between each optimization independently so as to isolate the bene-
fit of each optimization. In addition, many of these optimizations
are memory-aware, and so for a large enough on-chip memory,
SimFHE will automatically deploy the applicable optimization.

SimFHE helps in optimal parameter selection by combining the
simulation of algorithmic optimizations and hardware constraints.
Given the on-chip memory size, SimFHE searches the CKKS param-
eter space using a brute-force approach to find the optimal parame-
ters that maximize the bootstrapping throughput for a given system.
The parameters computed by SimFHE include the high-level ring
parameters such as the polynomial degree and coefficient modulus
as well as the low-level, internal bootstrapping parameters such
as the number of FFT iterations (fftIter) and the number of digits
(dnum) in the KeySwitch operation. In prior works, the selection
of parameters was quite opaque, and it was not clear how changing
a specific CKKS algorithm parameter or system constraint such
as on-chip memory size would affect the overall bootstrapping
performance. With SimFHE, these questions can be immediately
answered, which helps save significant design and development
time. Moreover, the security level constraints limit the number of
possible parameter sets, so the optimal parameter search takes only
a few minutes.

4.2 Bootstrapping Performance Comparison
To evaluate bootstrapping performance, we use the bootstrapping
throughput metric given by Han and Ki [19]:

throughput =
𝑛 · log𝑄1 · bp

brt
(3)

This metric attempts to capture the effectiveness of a bootstrapping
routine by multiplying the number of slots the algorithm bootstraps
(which is the number of plaintext slots 𝑛), the size of modulus
log𝑄1 in the resulting ciphertext (which translates to the number
of compute levels supported by the ciphertext), and the bit-precision
bp of the plaintext data. The product is then divided by the runtime
of the bootstrapping procedure, denoted as brt.

Optimal Bootstrapping Parameters: Using the throughput
metric from Equation (3), we can select parameters that maximize
the throughput. We employ SimFHE, with all our optimizations in-
cluded, to explore the parameter space of bootstrapping to identify

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Agrawal et al.

Table 6: Bootstrapping comparison: log𝑄1 is the size of the modulus immediately after bootstrapping. The bit-precision
achieved by all works is 19 except 𝐹1 which has a bit-precision of 24. All ASIC designs have a clock frequency of 1 GHz and their
bootstrapping runtime is based on the simulation results. Throughput is computed using Equation (3). As different designs use
a different number of plaintext slots (𝑛) for bootstrapping, we compare bootstrapping throughput instead of bootstrapping
runtime for a fair comparison.

Work (N, log𝑞)
Modular
Multiplier
Count

On-chip
Memory
(MB)

Memory
bandwidth 𝑛 log𝑄1

Bootstrapping
Runtime
(in ms)

Throughput
Throughput
(normalized
wrt MAD)

GPU [20] 217, 54 - 6 900 GB/s 216 1080 328.7 409 0.1361×
MAD 217, 54 2250 32 900 GB/s 216 950 39.35 3006

F1 [30] 214, 32 18432 64 1 TB/s 1 416 1.3 1.5 0.0005×
MAD 217, 54 18432 32 1 TB/s 216 950 40.6 2910

BTS [25] 217, 50 8192 512 1 TB/s 216 1080 50.43 2667 1.7178×
MAD 217, 54 8192 32 1 TB/s 216 950 76.2 1552

ARK [24] 216, 54 20480 512 1 TB/s 215 432 3.9 6896 2.1326×
MAD 217, 54 20480 32 1 TB/s 216 950 36.58 3234

CraterLake [31] 217, 28 14336 256 2.4 TB/s 216 532 6.33 10465 4.6248×
MAD 217, 54 14336 32 2.4 TB/s 216 950 52.2 2263

parameters that maximize the throughput when we have 32 MB on-
chip memory (all our optimizations when applied together require
a minimum 27 MB on-chip memory). As DRAM transfer times dom-
inate in bootstrapping, our functional model in SimFHE accounts
for DRAM transfer time in the total runtime analysis, resulting
in parameters that minimize DRAM transfers. The throughput-
maximizing parameters for our fully-optimized bootstrapping algo-
rithm (with all optimizations from Section 3 and Section 3.2) are
given in Table 5. We would like to note that any bootstrapping
implementation must specify the values for all parameters in Ta-
ble 1. For brevity, we list the important parameters in Table 5. The
unlisted parameters in Table 1 can be determined by the ones we
list in Table 5. This is also true for all the other works listed in
Table 6.

Bootstrapping Performance: To estimate the runtime for boot-
strapping when using our MAD techniques, we first use SimFHE to
determine the total number of operations and the total number of
DRAM transfers when we have 32 MB on-chip memory. For each
comparison in Table 6, we estimate the compute latency by using
the total number of operations, an operating frequency of 1 GHz
(same as the ASIC designs in related works), and by accounting for
the number of operations that can be done in parallel (using the
modular multiplier count listed in Table 6). For each comparison,
we determine the memory access latency for MAD using the mem-
ory bandwidth of the corresponding related work. For the related
works, the bootstrapping runtime shown in Table 6 is the bootstrap-
ping runtime presented by the authors in their respective papers.
As the authors in [20, 24, 25] mentioned that their parameters are
similar to [4], which has a bit precision of 19 bits, we assume these
works also have a bit precision of 19 bits.

In Table 6 we compare the throughput of the bootstrapping al-
gorithm with all our caching and algorithmic optimizations to the
prior art. For GPU implementation, we use the parameter set used
by Jung et al. [20] for bootstrapping and logistic regression. F1

primarily focuses on smaller parameter sets (𝑁 = 214) where full
ciphertexts fit in on-chip cache memory, allowing them to bypass
the memory bandwidth limitation. F1 has the lowest bootstrapping
throughput because it only implements “unpacked” CKKS boot-
strapping, where the ciphertext only holds one element. For Crater-
Lake [31], we use the bootstrapping parameter set from their paper
that gives 128-bit security. We select the parameter set for BTS-2
from BTS [25] as it provides the highest bootstrapping throughput
for the BTS design. ARK [24] uses a single parameter set for its
evaluation and we use that in our evaluation. We carefully modeled
all these designs in SimFHE and added our caching and algorithmic
optimizations to these designs. Applying our MAD techniques to
these designs improves their bootstrapping throughput.

Compared to the original GPU implementation [20] and F1 de-
sign, adding our MAD optimizations provides ∼7× and ∼2000×
higher bootstrapping throughput, respectively. This is because
GPU and F1 designs are memory-bound, indicative of the fact
that increasing the cache size in these designs can help improve
the bootstrapping throughput. In contrast, after adding our MAD
optimizations on the original BTS, ARK, and CraterLake designs,
the bootstrapping throughput reduces by ∼3×. This is because af-
ter applying our MAD optimizations these three designs become
compute-bound, and cannot take advantage of the large on-chip
memory (>256 MB) that is available in the original designs. In fact,
any increase in the on-chip memory beyond 32 MB does not im-
prove the bootstrapping throughput. So we need to increase the
compute throughput by 2× in BTS, 1.05× in ARK, and 3.5× in Crater-
Lake to generate a balanced design. As discussed in Section 1, the
ASIC designs can be prohibitively expensive. So applying our MAD
techniques on top of the original ASIC designs can help reduce their
cost as they would need smaller chips due to the smaller 32 MB
on-chip memory instead of the larger 256 MB and 512 MB on-chip
memory. In Section 4.4, we discuss the performance vs. area/cost

MAD: Memory-Aware Design Techniques for Accelerating
Fully Homomorphic Encryption MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

Figure 6: LR model training and ResNet-20 inference performance comparison. For the first bar in each sub-figure, we use
the following notation: name of the original design-cache size. For example, GPU-6 refers to the original GPU design with
6 MB cache. For the remaining bars, we use the following notation: name of the original design+MAD-cache size. For example,
GPU+MAD-6 refers to the original GPU design with our MAD optimizations using a 6 MB cache.

trade-offs associated with adding our MAD optimizations on top of
the existing designs.

4.3 ML Application Performance Comparison
Here we compare the performance of encrypted logistic regression
(LR) model training and ResNet-20 inference using our MAD op-
timizations (see Figure 6). In each of the sub-figure, the first bar
reports the time reported in the respective paper of GPU, F1, Crater-
Lake (CL), ARK, and BTS, and the remaining bars correspond to
the time when we apply MAD techniques on top of the original
designs. For generating the data for the remaining bars, we care-
fully modeled each one of the original designs in SimFHE and then
added our MAD optimizations on top.

For LR training, we implement the HELR algorithm [18] in
SimFHE using all our optimizations and the parameters in Table 5.
With our optimal parameter set (see Table 5), we need to perform

bootstrapping after every three training iterations. The ResNet-20
inference is based on the ResNet-20 CNN design by Lee et al. [27].
We perform inference on encrypted images (one at a time) from the
CIFAR-10 dataset. We adopt the same approach as that for deter-
mining bootstrapping runtime (described in Section 4.2) to generate
the LR model training time and ResNet-20 inference time.

LR Training: When compared to the GPU implementation, the
GPU+MAD-6 and GPU+MAD-32 need 3.5× and 17× less training
time, respectively, (see Figure 6 (a)). Note that with 6 MB cache
size limitation, we can only apply 𝛽-limb caching optimization for
GPU+MAD-6. When compared to the F1 ASIC design, F1+MAD-32
and F1+MAD-64, we can reduce the training time by ∼25× and
∼27×, respectively, (see Figure 6 (b)). The original F1 design is
memory-bound, but we do not observe a significant difference in
its performance between 32 MB to 64 MB on-chip memory. This is

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Agrawal et al.

because we observe only a 10% difference in total data transfers for
the two cache sizes.

In the case of the CraterLake design, with both CL+MAD-32 and
CL+MAD-256, we can reduce the training time by 2.5× (see Figure 6
(c)). The similar improvement in performance for both cases is due
to the fact that applying MAD optimizations makes the CraterLake
design compute bound. In the case of the BTS design, when we
apply our MAD optimizations, the resulting BTS+MAD-512 design
becomes compute bound and we observe an increase in the training
time by 2× (see Figure 6 (d)). This compute-boundedness can be
evidenced by the fact that decreasing the on-chip memory of the
BTS+MAD-512 design to 256 MB and 32 MB does not reduce the
training time (see Figure 6 (d)). In the case of the ARK design, similar
to BTS, applying our MAD optimizations makes it compute bound.
So for ARK+MAD-512, we see a 4× increase in training time (see
Figure 6 (e)). When we decrease on-chip memory of ARK+MAD-512
design to 32 MB, we see an increase in training time. This is because
the smaller on-chip memory leads to a 20% increase in the number
of DRAM transfers.

ResNet-20 Inference: In the case of the CraterLake design, with
CL+MAD-32 and CL+MAD-256, we can reduce the inference time
by 8× and 13×, respectively, (see Figure 6 (f)). The improvement in
performance for both on-chip memory sizes is due to the fact that
applyingMAD optimizations makes the CraterLake design compute
bound by reducing the data transfers more than the compute. In the
case of the BTS design, with BTS+MAD-32, BTS+MAD-256, and
BTS+MAD-512, we can reduce the inference time by 21×, 36×, and
57×, respectively, (see Figure 6 (g)). Similarly, in the case of the ARK
design, with ARK+MAD-32, ARK+MAD-256, and ARK+MAD-512,
we observe a reduction in the inference time by 1.3×, 2.2× and 3.6×,
respectively, (see Figure 6 (e)). For both ARK and BTS designs, we
observe a reduction in the total amount of data transfers from the
main memory by 2.7× as we move from 32 MB to 512 MB on-chip
memory.

We would like to note that the increase (c.f. decrease) in bootstrap-
ping throughput does not necessarily equate to a decrease (c.f. in-
crease) in performance. This is because we compute the bootstrapping
throughput for a fully-packed bootstrapping, while for the applica-
tions, we utilize bootstrapping implementation with fewer ciphertext
slots as described in HELR [18] and ResNet-20 inference [27].

4.4 Performance vs. Area/Cost Tradeoffs
The primary strategy of prior works to mitigate the CKKS mem-
ory bottleneck is to have a large on-chip memory. For example,
CraterLake uses 256 MB, and BTS and ARK use 512 MB on-chip
memory. A large on-chip memory results in a large chip area, which
equates to an expensive solution. Our analysis in the previous sec-
tion reveals that in some cases applying MAD techniques on top
of the existing ASIC designs can improve performance as well as
reduce the required size of the on-chip memory, which reduces the
chip area and in turn the cost. Essentially, we end up in a win-win
situation. In other cases, applying MAD techniques with small on-
chip memory leads to performance loss. In these cases, we need to
understand the tradeoff between performance and area/cost, and
then depending on the performance and area/cost specifications,
choose which MAD optimizations to apply.

5 RELATEDWORK
Recently, Jung et al. [20] presented the first ever GPU implementa-
tion of CKKS bootstrapping. Their analysis, even though limited to
GPUs, rightly points out the main-memory-bounded nature of the
bootstrapping operation. Thus, their optimizations, such as inter-
and intra-kernel fusion, are all focused on improving the memory
bandwidth utilization rather than accelerating the compute itself.

Samardzic et al. [30] presented the first architecture of a pro-
grammable hardware accelerator for FHE. This work primarily fo-
cuses on smaller parameter sets where full ciphertexts fit in on-chip
cache memory, allowing them to bypass the memory bandwidth
limitation. However, many natural applications such as SIMD boot-
strapping and machine learning require larger parameter sets that
are not addressed in [30]. A follow up ASIC design from Samardzic
et al. [31] addresses the issue of supporting large parameters and
implements packed bootstrapping. From their performance anal-
ysis, it is evident that the compute block is underutilized (∼ 40%
utilization during bootstrapping) due to memory bottleneck.

Recent ASIC proposals by Kim et al. [24, 25] implement fully
packed bootstrapping using 7nm technology. Their analysis also
shows that the FHE operations are memory bottlenecked, which
they mitigate by employing a large register file (>22MB) and a
massive amount of on-chip memory (512MB). Notably, ARK [24]
includes algorithmic optimizations to significantly reduce the mem-
ory bandwidth of CKKS bootstrapping by reducing the number of
switching keys required in the homomorphic FFT evaluation. This
optimization crucially relies on a large on-chip memory (at least
a few hundred MB), but this improvement seems to completely
address the memory bottleneck issue; to our knowledge, it is the
only balanced hardware acceleration of CKKS bootstrapping.

6 CONCLUSION
In this paper, we performed a thorough architecture-level analy-
sis of the compute and memory requirements for the CKKS FHE
scheme to identify the limits and opportunities for hardware accel-
eration of CKKS bootstrapping. Our analysis shows that the boot-
strapping step, the critical performance bottleneck in FHE-based
computing, has low arithmetic intensity and is heavily constrained
by the main memory bandwidth. We proposed several memory-
aware design optimizations that are agnostic of the underlying
hardware. Our optimizations improve bootstrapping throughput
and at the same time reduce the on-chip memory requirements.
Applying our MAD optimizations for FHE improves bootstrapping
arithmetic intensity by 3×. For Logistic Regression training, by
leveraging our MAD optimizations, the existing GPU design can
get up to 3.5× improvement in performance for the same on-chip
memory size. Similarly, the existing ASIC designs can get up to
27× and 57× improvement in performance for Logistic Regression
training and ResNet-20 inference, respectively, while reducing the
on-chip memory requirement by 16×, which proportionally reduces
the cost of the solution.

ACKNOWLEDGMENTS
This research was supported in part by DARPA under Agreement
No. HR00112020023, NSF CNS-2154149, a grant from the MIT-IBM
Watson AI, and a Thornton Family Faculty Research Innovation

MAD: Memory-Aware Design Techniques for Accelerating
Fully Homomorphic Encryption MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

Fellowship from MIT. Any opinions, findings, and conclusions,
or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the United
States Government or DARPA. This research was also partially
funded by the NSF CNS CSE 2312276 grant.

REFERENCES
[1] Rashmi Agrawal, Leo de Castro, Guowei Yang, Chiraag Juvekar, Rabia Yazicigil,

Anantha Chandrakasan, Vinod Vaikuntanathan, and Ajay Joshi. 2023. FAB: An
FPGA-based accelerator for bootstrappable fully homomorphic encryption. In
2023 IEEE International Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 882–895.

[2] Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser, Sergey
Gorbunov, Shai Halevi, Jeffrey Hoffstein, Kim Laine, Kristin Lauter, Satya Lokam,
Daniele Micciancio, Dustin Moody, Travis Morrison, Amit Sahai, and Vinod
Vaikuntanathan. 2018. Homomorphic Encryption Security Standard. Technical
Report. HomomorphicEncryption.org, Toronto, Canada.

[3] VA Bespalov, NA Dyuzhev, and V Yu Kireev. 2022. Possibilities and Limitations
of CMOS Technology for the Production of Various Microelectronic Systems and
Devices. Nanobiotechnology Reports 17, 1 (2022), 24–38.

[4] Jean-Philippe Bossuat, Christian Mouchet, Juan Troncoso-Pastoriza, and Jean-
Pierre Hubaux. 2021. Efficient Bootstrapping for Approximate Homomorphic
Encryption with Non-sparse Keys. In Advances in Cryptology – EUROCRYPT 2021.
Springer International Publishing, Cham, 587–617.

[5] Zvika Brakerski. 2012. Fully Homomorphic Encryption without Modulus Switch-
ing from Classical GapSVP. In Advances in Cryptology – CRYPTO 2012, Reihaneh
Safavi-Naini and Ran Canetti (Eds.). Springer Berlin Heidelberg, Berlin, Heidel-
berg, 868–886.

[6] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. 2012. (Leveled) fully
homomorphic encryption without bootstrapping. In ITCS ’12.

[7] Zvika Brakerski and Vinod Vaikuntanathan. 2011. Efficient Fully Homomorphic
Encryption from (Standard) LWE. In IEEE 52nd Annual Symposium on Foundations
of Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, Rafail
Ostrovsky (Ed.). IEEE Computer Society, 97–106. https://doi.org/10.1109/FOCS.
2011.12

[8] Hao Chen, Ilaria Chillotti, and Yongsoo Song. 2019. Improved Bootstrapping
for Approximate Homomorphic Encryption. In Advances in Cryptology – EU-
ROCRYPT 2019, Yuval Ishai and Vincent Rijmen (Eds.). Springer International
Publishing, Cham, 34–54.

[9] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song.
2018. Bootstrapping for approximate homomorphic encryption. In Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques.
Springer, 360–384.

[10] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song.
2019. A Full RNS Variant of Approximate Homomorphic Encryption. In Selected
Areas in Cryptography – SAC 2018, Carlos Cid and Michael J. Jacobson Jr. (Eds.).
Springer International Publishing, Cham, 347–368.

[11] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. 2017. Homomor-
phic Encryption for Arithmetic of Approximate Numbers. In Advances in Cryp-
tology – ASIACRYPT 2017, Tsuyoshi Takagi and Thomas Peyrin (Eds.). Springer
International Publishing, Cham, 409–437.

[12] Lawrence T Clark, Vinay Vashishtha, Lucian Shifren, Aditya Gujja, Saurabh
Sinha, Brian Cline, Chandarasekaran Ramamurthy, and Greg Yeric. 2016. ASAP7:
A 7-nm finFET predictive process design kit. Microelectronics Journal 53 (2016),
105–115.

[13] Junfeng Fan and Frederik Vercauteren. 2012. Somewhat Practical Fully Ho-
momorphic Encryption. Cryptology ePrint Archive, Report 2012/144. https:
//ia.cr/2012/144.

[14] Craig Gentry. 2009. A fully homomorphic encryption scheme. Stanford university.
[15] Shai Halevi, Yuriy Polyakov, and Victor Shoup. 2019. An Improved RNS Variant

of the BFV Homomorphic Encryption Scheme. In Topics in Cryptology – CT-RSA
2019 - The Cryptographers’ Track at the RSA Conference 2019, Proceedings, Mitsuru
Matsui (Ed.). Springer Verlag, Germany, 83–105. https://doi.org/10.1007/978-3-
030-12612-4_5

[16] Shai Halevi and Victor Shoup. 2017. Presentation at the Homomorphic Encryption
Standardization Workshop.

[17] Kyoohyung Han, Minki Hhan, and Jung Hee Cheon. 2019. Improved Homomor-
phic Discrete Fourier Transforms and FHE Bootstrapping. IEEE Access 7 (2019),
57361–57370. https://doi.org/10.1109/ACCESS.2019.2913850

[18] Kyoohyung Han, Seungwan Hong, Jung Hee Cheon, and Daejun Park. 2019.
Logistic Regression on Homomorphic Encrypted Data at Scale. Proceedings
of the AAAI Conference on Artificial Intelligence 33, 01 (Jul. 2019), 9466–9471.
https://doi.org/10.1609/aaai.v33i01.33019466

[19] Kyoohyung Han and Dohyeong Ki. 2020. Better Bootstrapping for Approximate
Homomorphic Encryption. In Topics in Cryptology – CT-RSA 2020, Stanislaw

Jarecki (Ed.). Springer International Publishing, Cham, 364–390.
[20] Wonkyung Jung, Sangpyo Kim, Jung Ho Ahn, Jung Hee Cheon, and Younho Lee.

2021. Over 100x Faster Bootstrapping in Fully Homomorphic Encryption through
Memory-centric Optimization with GPUs. IACR Transactions on Cryptographic
Hardware and Embedded Systems 2021, 4 (Aug. 2021), 114–148. https://doi.org/
10.46586/tches.v2021.i4.114-148

[21] Wonkyung Jung, Eojin Lee, Sangpyo Kim, Keewoo Lee, Namhoon Kim, Chohong
Min, Jung Hee Cheon, and Jung Ho Ahn. 2020. HEAANDemystified: Accelerating
Fully Homomorphic Encryption Through Architecture-centric Analysis and
Optimization. arXiv preprint arXiv:2003.04510 (2020).

[22] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. 2018.
GAZELLE: A low latency framework for secure neural network inference. In
27th USENIX Security Symposium (USENIX Security 18). 1651–1669.

[23] Moein Khazraee, Lu Zhang, Luis Vega, and Michael Bedford Taylor. 2017. Moon-
walk: Nre optimization in asic clouds. ACM SIGARCH Computer Architecture
News 45, 1 (2017), 511–526.

[24] Jongmin Kim, Gwangho Lee, Sangpyo Kim, Gina Sohn, John Kim, Minsoo Rhu,
and Jung Ho Ahn. 2022. ARK: Fully Homomorphic Encryption Accelerator
with Runtime Data Generation and Inter-Operation Key Reuse. arXiv preprint
arXiv:2205.00922 (2022).

[25] Sangpyo Kim, Jongmin Kim, Michael Jaemin Kim, Wonkyung Jung, Minsoo Rhu,
John Kim, and Jung Ho Ahn. 2021. BTS: An Accelerator for Bootstrappable Fully
Homomorphic Encryption. arXiv preprint arXiv:2112.15479 (2021).

[26] SO Kuyoro, F Ibikunle, and O Awodele. 2011. Cloud computing security issues
and challenges. International Journal of Computer Networks (IJCN) 3, 5 (2011),
247–255.

[27] Joon-Woo Lee, HyungChul Kang, Yongwoo Lee, Woosuk Choi, Jieun Eom, Maxim
Deryabin, Eunsang Lee, Junghyun Lee, Donghoon Yoo, Young-Sik Kim, et al.
2022. Privacy-preserving machine learning with fully homomorphic encryption
for deep neural network. IEEE Access 10 (2022), 30039–30054.

[28] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. 2010. On Ideal Lattices and
Learning with Errors over Rings. In Advances in Cryptology – EUROCRYPT 2010,
Henri Gilbert (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 1–23.

[29] R L Rivest, L Adleman, and M L Dertouzos. 1978. On Data Banks and Privacy
Homomorphisms. Foundations of Secure Computation, Academia Press (1978),
169–179.

[30] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Srinivas Devadas, Ronald
Dreslinski, Christopher Peikert, and Daniel Sanchez. 2021. F1: A Fast and Pro-
grammable Accelerator for Fully Homomorphic Encryption. In MICRO-54: 54th
Annual IEEE/ACM International Symposium on Microarchitecture (Virtual Event,
Greece) (MICRO ’21). Association for Computing Machinery, New York, NY, USA,
238–252. https://doi.org/10.1145/3466752.3480070

[31] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Nathan Manohar,
Nicholas Genise, Srinivas Devadas, Karim Eldefrawy, Chris Peikert, and Daniel
Sanchez. 2022. CraterLake: a hardware accelerator for efficient unbounded
computation on encrypted data. In Proceedings of the 49th Annual International
Symposium on Computer Architecture. 173–187.

https://doi.org/10.1109/FOCS.2011.12
https://doi.org/10.1109/FOCS.2011.12
https://ia.cr/2012/144
https://ia.cr/2012/144
https://doi.org/10.1007/978-3-030-12612-4_5
https://doi.org/10.1007/978-3-030-12612-4_5
https://doi.org/10.1109/ACCESS.2019.2913850
https://doi.org/10.1609/aaai.v33i01.33019466
https://doi.org/10.46586/tches.v2021.i4.114-148
https://doi.org/10.46586/tches.v2021.i4.114-148
https://doi.org/10.1145/3466752.3480070

	Abstract
	1 Introduction
	2 Background
	2.1 CKKS Basics
	2.2 Memory Bottlenecks of CKKS
	2.3 Arithmetic Intensity Analysis

	3 MAD Techniques
	3.1 Caching Optimizations
	3.2 Algorithmic Optimizations

	4 Evaluation
	4.1 SimFHE: Our Simulator
	4.2 Bootstrapping Performance Comparison
	4.3 ML Application Performance Comparison
	4.4 Performance vs. Area/Cost Tradeoffs

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

