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The number of parameters in deep neural networks (DNNs) is scaling at about 5× the rate of Moore’s Law. To

sustain this growth, photonic computing is a promising avenue, as it enables higher throughput in dominant

general matrix-matrix multiplication (GEMM) operations in DNNs than their electrical counterpart. How-

ever, purely photonic systems face several challenges including lack of photonic memory and accumulation

of noise. In this article, we present an electro-photonic accelerator, ADEPT, which leverages a photonic com-

puting unit for performing GEMM operations, a vectorized digital electronic application-specific integrated

circuits for performing non-GEMM operations, and SRAM arrays for storing DNN parameters and activations.

In contrast to prior works in photonic DNN accelerators, we adopt a system-level perspective and show that

the gains while large are tempered relative to prior expectations. Our goal is to encourage architects to ex-

plore photonic technology in a more pragmatic way considering the system as a whole to understand its

general applicability in accelerating today’s DNNs. Our evaluation shows that ADEPT can provide, on aver-

age, 5.73× higher throughput per watt compared to the traditional systolic arrays in a full-system, and at least

6.8× and 2.5× better throughput per watt, compared to state-of-the-art electronic and photonic accelerators,

respectively.
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1 INTRODUCTION

Deep neural networks (DNNs) have shown to perform impressive humanlike tasks in a range of
applications including image and video processing [43], diagnostic medical imaging [81], speech
recognition [44], and conversational artificial intelligence [32]. OpenAI’s study shows that modern
DNN computational requirements have increased 300,000× from AlexNet (2012) to AlphaGo Zero
(2018). This general trend is projected to continue as newerand larger DNN models emerge ever so
often [7].

Consequently, a variety of solutions have been developed to support the growing compute re-
quirements. These solutions include massively threaded graphics processing units (GPUs) [26,
28, 48], field-programmable gate arrays [34, 47, 85], and specialized application-specific inte-

grated circuits (ASICs) [21, 23, 35]. While these solutions provide significant architectural and
performance benefits for DNN execution, they are based on CMOS transistors—devices that no
longer scale in area or energy consumption according to Moore’s Law and Dennard Scaling [100].

As an alternative, there is growing interest in using photonic computing architectures for meet-
ing the computational demands of DNNs. The idea of computing with light is not new and has
been explored since the 1960s [15, 17, 79]. The advent of integrated photonics, in particular silicon
photonics, which has seen widespread integration in commercial CMOS foundries alongside tran-
sistors on 300-mm wafers [38] has further propelled research in photonic computing. However,
limitations around photonic information storage (no photonic memory) and weak photon-photon
nonlinearities (no photonic transistor) make it difficult—if not impossible—to design a general-
purpose fully photonic computing architecture. Prior art leverages the highly parallel and efficient
linear transformations enabled by photonics to build specialized DNN accelerators with orders
of magnitude improvements in speed and energy efficiency when computing general matrix-

matrix multiplication (GEMM) and convolution operations [12, 71, 87, 88, 91, 92, 106], which
accounts for more than 90% of the total number of operations within a DNN network [24].

In this article, we seek to calibrate the expectations of the photonic GEMM technology with re-
spect to building a complete system, including the photonic and non-photonic components needed
to make it all work. We set out to answer two key questions. First, given that photonic accelera-

tors still need electronics (for control, data storage, and nonlinearities), how do we build a complete

electro-photonic accelerator architecture that is not bottlenecked by the slower electronics? To answer
this question, we present the microarchitecture of an electro-photonic accelerator called ADEPT,
where we match the throughput of the electronic and photonic components. ADEPT comprises
high-throughput photo-core(s), various data converters, custom vectorized electronic digital ASIC,
and large electronic SRAM arrays. The photo-core is a scalable and highly-efficient photonic tensor
core containing Mach-Zehnder Interferometers (MZIs) for GEMM operations. In the photo-
core, we adopt a weight stationary (WS) approach where the weight matrix is programmed
into the MZI array. The inputs are routed, one vector at a time, through digital-to-analog con-
verter, electrical-to-optical (O-E) converter, the MZI array, O-E converter, and analog-to-digital
converter. While the photo-core can handle GEMM operations (over 90% of the overall DNN op-
erations), DNNs rely on a non-trivial amount of non-GEMM operations that are executed in the
electrical domain. To match the throughput of the photonic and electronic components, we ar-
chitect a highly vectorized electronic digital ASIC with multiple digital lanes, where each lane
supports basic arithmetic operations that can be used for building more complex non-GEMM op-
erations. To efficiently orchestrate the operations and maximize the performance of ADEPT, we
pipeline GEMM and non-GEMM operations and use an efficient buffering scheme to minimize
DRAM access overhead. Finally, we evaluate ADEPT in the context of a full system to understand
the big picture.
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The second question we set out to answer is (2) how much are the electro-photonic accelerator

systems better than purely electronic accelerator systems, when we consider the system as a whole,

i.e., accelerator + memory + host processor + communication, running practical real-world appli-

cations? To answer this question, we perform a head-to-head comparison of ADEPT with elec-
tronic systolic arrays (SAs) in terms of the full system throughput (in inferences per second

(IPS)), power efficiency (in IPS/W), and power-area efficiency (in IPS/W·mm2). We use the follow-
ing three state-of-the-art neural networks from the MLPerf datacenter inference benchmarks [78]
that represent a wide range of operations: ResNet-50 [43] for image classification on the ImageNet
dataset [82], BERT-large [32] for natural language processing (NLP) on the SQuAD v1.1 [74]
question-answering dataset, and RNN-T [44] as an LSTM-based speech recognition network on the
LibriSpeech [69] speech audio dataset. Our analysis shows that, compared to SAs, ADEPT provides
4.89×, 3.24×, and 9.06× better power efficiency for the full system for ResNet-50, BERT-large, and
RNN-T networks, respectively. Compared to the state-of-the-art electronic accelerators, ADEPT
performs at least 6.8× better in terms of IPS/W. In addition, we perform a detailed comparison
between ADEPT and current state-of-the-art photonic accelerators. Our analysis shows that com-
pared to state-of-the-art photonic accelerators [61, 71, 91], ADEPT can provide more than 2.5×
better power efficiency for the same batch size and more than 8.3× better power efficiency when
the maximum batch size is used.

In summary, our work is the first to emphasize the importance of considering the entire sys-
tem to understand the real benefit of the photonic GEMM cores for DNN inference. Our study
shows that the impact of the electronic components in an electro-photonic accelerator system is
not negligible. However, while an electro-photonic system may be bound by Amdahl’s Law, it
is still feasible—and beneficial—to build a balanced electronic-photonic system that leverages the
highly efficient photonic computing medium. Our work aims to provide practical insights to the
community and to encourage architects to explore photonic technology in a more pragmatic way
without “missing the forest for the trees.” Broadly, we show that while using photonics technology
for computing is promising, claims of tera-inferences per second are not realistic when considering
the system as a whole.

2 BACKGROUND AND RELATED WORK

This section provides an overview of different ways of accelerating GEMM operations using pho-
tonics, a discussion on optical devices and their efficiency and scalability, and an explanation of
why performing non-linear operations in photonics is challenging. Last, we detail the evaluation
coverage of the state-of-the-art photonic accelerator architectures to demonstrate how our work
sheds new insights, specifically from the perspective of a complete system rather than just the
accelerator.

2.1 Photonics for GEMM Acceleration

Photonics has been perceived as a promising medium for performing linear operations such as
matrix-matrix multiplication—which is a key operation for DNN acceleration. In this section, we
aim to provide a short review of the landscape of optical matrix-matrix multiplication. We can
divide the existing methods broadly into three categories:

MZI-based methods: An MZI is a configurable photonic device that controls the interference
of two light beams by adjusting the relative phase shift between the beams. Previous works based
on MZIs [75, 88] are mainly based on the idea that any real-valued matrix can be decomposed
into unitary and diagonal matrices by using singular value decomposition (SVD). A universal
linear network can then be composed of two universal unitary circuits and an additional column of
attenuators as described by Miller [64]. By tuning the amount of phase shift in MZIs, the values can
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be reprogrammed and a full MVM operation can be performed by passing modulated input signals
through the MZI mesh. This type of GEMM operation has been demonstrated by Shen et al. [88] for
vowel recognition application. Lightmatter’s Mars chip [75] is another recent example that shows
the applicability of the MZI mesh structure. MZI-based structures are widely used in photonic
GEMM acceleration as they can effectively represent matrices and perform MVM operations. The
disadvantages of such architectures include the large area footprint of MZIs and susceptibility to
phase-noise corruption that can be mitigated by error-correction methods [11].

Micro-ring resonator (MRR)/Micro-disk– (MD) based methods: MRR- or MD-based meth-
ods typically leverage wavelength division multiplexing (WDM) where multiple optical sig-
nals, each with a different wavelength, are carried by the same waveguide. These accelerators adopt
a broadcast-and-weight (B&W) approach for GEMM or MVM operations that was first proposed
by Tait et al. [99] in 2014 and demonstrated in 2017 [98]. B&W method uses weighting banks com-
prised of MRRs or MDs as tunable filters. Each MRR in the bank tunes the signal that shares its
resonant wavelength and the sum is collected at the end of the bank by a photodetector—which
is effectively a vector dot product. MRR-based approaches are popularly used to accelerate DNN
applications [12, 27, 61, 62, 97, 111]. The challenges of such architectures include inter-channel
and intra-channel cross-talk and thermal stabilization.

Diffractive optics-based methods: In these methods, diffractive optical elements (DOEs)

are used to perform MVMs. By encoding the weights of a DNN onto the DOEs, the input can be
multiplied by the weight matrix in a single step using the interference patterns produced by the
DOE. This method is used by Lin et al. [59] in designing all-optical diffractive deep neural net-
works as well as by Zhou et al. [114] for designing a diffractive processing unit. Another approach
is to use diffractive lenses to implement convolution operations in a DNN. This technique typically
uses a combination of lenses (e.g., Fourier lenses) and spatial light modulators to perform convolu-
tion [18, 66, 94, 112]. Optalysys combines silicon photonics and Fourier optics to accelerate CNNs,
transformers, and fully homomorphic encryption [30, 108].

2.2 Efficiency and Scalability of Photonic Devices

The scalability and efficiency of a photonic GEMM core is dependent on the type of optical devices,
the required bit precision, the operation frequency, and the noise sources. Each design presented
in the previous works has different tradeoffs and unique limitations. In this section, we provide a
brief comparison of MZIs and MRRs, two commonly used photonic devices, to explain our choice
of MZIs over MRRs in our design. Our purpose is not to propose a more efficient photonic core than
the existing works. Instead, we argue that as long as we are still dependent on electronic devices,
which are much slower compared to photonic devices, regardless of the used optical device, the
hybrid design will require a system-level evaluation approach to determine its use. In fact, the
scalability and efficiency of photonic cores can be further improved as more efficient optical devices
are developed. However, as the photonic core gets more efficient, the system-level analysis will be
more and more important. Therefore, in this article, we aim to provide insights using an MZI-based
design and these insights are applicable to other photonic device-based designs. In this section, our
goal is to give a glimpse of the different design options available and their tradeoffs.

MRRs are typically smaller (with a dimension of ∼10 μm) than MZIs (with a dimension of
∼100 μm) and can provide a better power and area efficiency [6]. However, MZIs have been
shown to achieve an extremely high extinction ratio (ER, which is a measure of how precise
the light signals can be modulated by the photonic device) of greater than 60 dB [107]. The
ER of MRRs is determined by how closely we can achieve critical coupling, which can be lim-
ited by the MRR’s thermal stability [16]. State-of-the-art demonstrations of a single MRR have
their measured ER at <25 dB [89]. MRRs with stabilization circuits have been demonstrated in
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electro-photonic transceivers for communication [68, 95, 101]. Unfortunately, for DNN inference,
we typically need 8-bit precision during computations, which is more than the 1 or 2 bits that are
required for NRZ [76] or PAM-4 [96] keyings, respectively, used in communication. As a result, the
stabilization circuitry will consume more area and power than what has been demonstrated. Nev-
ertheless, recent works show that it is possible to increase the ER of MRRs by cascading multiple
MRRs [27]. Additionally, it has been shown that the thermal cross-talk can be mitigated and tuning
efficiency can be improved by several methods including placing air trenches [33], simultaneously
controlling the actuators [63], and using photoconductive heaters [50].

In this article, we use the MZI mesh structure similarly to Reference [75]. In silicon photonics,
the phase difference in MZIs is achieved by delaying light in one arm using various mechanisms,
including the thermo-optic effect (∼100s-kHz bandwidth) [42], mechanical effect (≥MHz band-
width) [72], and electric-field induced electro-optic effect (≥GHz bandwidth) [102]. Recent studies
show that NOEM phase shifters can operate at CMOS-compatible voltages (≤1.2 V) with an inser-
tion loss of less than 0.04 dB and a modulation frequency of a few hundred MHz [10]. Compared
to the lossy plasma dispersion effect [9] and slow thermo-optic effect [105], using NOEM phase
shifters enable both low loss and relatively fast modulation. With a dataflow leveraging the high
reuse of these devices, we can build large systems satisfying a low power budget and clock rates
on the order of GHz.

2.3 Nonlinear Operations

Any nonlinear operation (e.g., nonlinear activation functions or conditional if-else statements) on
the optical electromagnetic waves requires the use of nonlinear optical media [49]. Nonlinear opti-
cal activation function has previously been demonstrated using laser-cooled atoms, which absorb
light up to some saturation intensity (higher intensity light is absorbed more) [116]. Saturable ab-
sorbers, where the amount of light absorbed decreases with increasing light intensity, have also
been proposed as optical nonlinear activations [13, 88]. However, the practical implementation of
these nonlinear optical activations remains challenging, especially since (1) they have not been
miniaturized, and (2) repeated usage of the nonlinear activation function will decay the signal
quickly.

Amplification-based nonlinear functions made out of semiconductor optical amplifiers in III-V
materials, e.g., InP and InGaAs, can combat the loss described above [80]. In principle, an optical
DNN accelerator can be built in the III-V platform itself [90], but researchers still prefer to use
silicon photonics as it has been monolithically integrated with the CMOS transistors [38] needed
for controlling the photonic components. Packaging the III-V module with a silicon photonics
module poses a challenge to its feasibility. Even when a practical packaging solution is available,
the amount of power needed to maintain the optical signal throughout the entire inference will
increase exponentially with the number of neural network layers. We, therefore, conclude that
optical nonlinearities are impractical today, and we choose to architect a system that performs
these nonlinearities electronically.

2.4 Evaluation of State-of-the-Art Photonic Accelerator Architectures

In this section, we focus on the evaluation methodology of previous photonic accelerator works.
Evaluation of several photonic tensor cores in prior works has been isolated from the system
surrounding the photonic tensor cores [36, 87, 88, 106, 111]. While the performance numbers are
impressive, these accelerators need to be viewed through the lens of a practical system. Some works
have combined photonics with electronics [27, 61, 62, 71, 91, 92]. However, these works provided
either a conceptual design or a partial system evaluation. Table 1 presents the state-of-the-art
works on photonic DNN accelerators that provide a partial system evaluation. This summary sets
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Table 1. Comparison against Other Photonic Accelerators

Non-Photonic Components and Metrics Considered Benchmarks

Accelerator Optical Element Non-GEMM On-chip Memory Off-chip Memory CNN NLP RNN

ADEPT MZI ✔ ✔ ✔ ✔ ✔ ✔
Albireo[91] MRR+MZI ✗ ✔ ✗ ✔ ✗ ✗
PIXEL[92] MRR+MZI ✔ ✗ ✗ ✔ ✗ ✗

PCNNA[62] MRR ✗ ✗ ✗ ✔ ✗ ✗
DNNARA[71] MRR ✔ ✔ ✗ ✔ ✗ ✗
Holy-Light[61] MRR ✔ ✔ ✗ ✔ ✗ ✗

the stage to discuss how one needs to systematically take a full-system view to understand the
limits and opportunities for using photonic cores.

2.4.1 Compute vs. Memory. Small on-chip caches (on the order of hundreds of KBs used by
previous works [71, 91, 92]) cannot hold large DNN models, input/output data, and intermedi-
ate data at the same time and so will need frequent off-chip memory accesses—which will stall
the photonic core. Similarly, non-GEMM operations should be performed fast enough not to throt-
tle down the high-throughput photonic core. Therefore, all the electronic components in the ac-
celerator should be architected carefully and analyzed in detail to make fair conclusions about the
photonic technology. Unfortunately, the studies of the non-photonic components in the previous
works have been limited. In our work, we provide a complete system-level analysis in terms of
power and latency including the non-photonic arithmetic units for non-linear operations, data
conversion circuits, die-to-die interconnect, and on-chip and off-chip memory.

2.4.2 Benchmarks. Prior photonic accelerators are either specifically designed for CNNs or re-
port results only for CNNs. While these accelerators perform well for convolution operations, most
are under-utilized and perform poorly for linear layers. Moreover, several of them use old and small
neural networks that do not stress the memory system as much as state-of-the-art neural networks.
Additionally, non-CNN networks are typically richer in terms of the variety of operations—which
makes the system perspective even more important. Given that non-CNN networks are being more
commonly used in recent years, focusing on only CNNs provides a limited perspective on using
photonic cores for DNN acceleration. ADEPT is the first photonic accelerator work to report re-
sults for non-CNN networks, particularly with BERT-Large and RNN-T, which contain a wider
range of operations than CNNs.

Broadly, while previous works are helpful toward understanding the raw capability of photonic
compute cores, our key takeaway message here is that it is not just about the raw compute capacity
of photonic cores; instead, it is important to look at the system as a whole and understand the
general applicability and true benefits of photonic technology in artificial intelligence.

3 FULL-SYSTEM ARCHITECTURE

Our work focuses on understanding the implications of a complete electro-photonic system
consisting of a host CPU, DRAM, PCI-e bus, and the electro-photonic accelerator ADEPT (see
Figure 1(d)). ADEPT is connected to the host CPU and DRAM through a PCI-e bus. Host CPU
handles the compilation and any other operations required by the DNN model that can be per-
formed offline including pre/post-processing (e.g., resizing, decoding, etc.) and precomputation of
the phase values for the MZIs. The inference is then performed fully in ADEPT without any inter-
ference from the host CPU. In this section, we introduce the ADEPT (micro)architecture, present
optimizations that allow it to be efficiently integrated into a full system, and describe the compila-
tion flow so that we can do a full evaluation of an electro-photonic system.
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Fig. 1. Diagram showing different components of ADEPT and how operations are performed. (a) Example

GEMM operation in the photo-core. (b) Programming input and weight matrices into the photo-core. The

m ×m (here m = 3 as an example) photo-core consists of 2 ×m(m − 1)/2 = 6 MZIs (for U and VT ) and

three attenuators (for Σ). (c) Microarchitecture for a single digital electronic vectorized processing unit. The

unit comprises m = 3 digital lanes, each consisting of arithmetic units to perform non-GEMM operations.

(d) Full system architecture including the host CPU, the DRAM, and ADEPT—interconnected using a PCI-e

interface. As an example, we show four photo-cores and four vectorized processing units.

3.1 ADEPT Architecture

ADEPT is an electro-photonic accelerator that contains an analog photonic computing unit for
GEMM operations, a custom digital electronic vectorized processing unit for non-GEMM opera-
tions, and memory units for storing weight and activation data.

3.1.1 GEMM Operation with Photonics. ADEPT uses MZIs as a building block to perform MVM
operations that can eventually be composed into a GEMM operation. The transfer function of an
MZI is represented by a 2 × 2 orthogonal matrix:

U (2) =

[
sinϕ cosϕ
cosϕ − sinϕ

]
, (1)

where ϕ is the phase difference between the two internal arms of the MZI. Similarly, MZIs can be
used as an attenuator for scaling a single value when one arm is blocked.

To perform an MVM using an MZI array, we first need to program the matrix into the MZIs as
phase values. Figure 1(a) shows an example of programming a 3 × 3 matrix M into a 3 × 3 MZI
array in Figure 1(b). The matrix M is first decomposed into the three matrices through the SVD,
i.e., M = U ΣVT , where U and VT are m ×m orthogonal matrices and Σ is a diagonal matrix of
singular values. U (m) and V (m)T unitary matrices with m > 2 can be composed using either a
rectangular [29] or triangular [77] pattern. In this work, we use the rectangular pattern proposed
by Clements et al. [29], which outperforms the triangular pattern due to its symmetry and reduced
optical depth.

Next, the phases (ϕU ,ϕΣ,ϕV T ) needed to program in the matrices U , Σ, and VT are computed
by using the phase decomposition algorithm [29]. The phase decomposition algorithm is an algo-
rithm similar to QR decomposition that breaks a large orthogonal matrix U into a series of 2 × 2
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orthogonal matrices acting on different input rows. Finally, a total of m2 phase values—equal to
the number of elements in M—are programmed into the array to create the matrix M .

An MVM between a matrix M and a vector vin can then be achieved by (1) programming the
matrix M in the array of MZIs, (2) encoding the vector vin in the amplitude and phase (0 or π for
sign) of the optical signals entering the array, and (3) obtaining the resulting vector vout = M ·vin

at the output of the array. When the vector vin is inserted at GHz rate, a 100 × 100 array enables
us to perform linear operations at 10 Tera Operations per Second (TOPS). A GEMM operation
consists of a series of MVM operations. GEMM between two matrices can be achieved by encoding
one matrix in the MZI array and by sending the other matrix through the array as optical signals—
one vector at a time.

3.1.2 Analog Photonic Computing Unit. The photonic computing unit in ADEPT is an analog
unit designed to perform MVM operations that can eventually be composed into a GEMM opera-
tion. The unit consists of a set of vector modulators (Mach-Zehnder Modulators (MZMs)), an
array of MZIs, photo-detectors, analog-to-digital converters (ADCs), and digital-to-analog

converters (DACs) (see Figure 1(b)). We refer to the unit without ADCs and DACs as the
photo-core.

GEMM operations in DNNs (e.g., in the fully connected layer and the two-dimensional (2D)
convolution layer) typically involve a multiplication between a weight tensor and an input tensor.
The input and weight matrix shapes vary for each layer in a DNN, but the photo-core has a fixed
size ofm ×m. Therefore, matrices bigger thanm ×m are divided intom ×m sized submatrix tiles
and loaded into the photo-core one by one.

We adopt a WS dataflow in the photo-core, where the weight matrix is programmed into the MZI
array and the input vector is encoded in the optical signals. Figure 1(a) shows a simple example of
this step. First, the input and weight matrices are flattened if necessary (for 2D convolutions) using
“im2col” pre-processing [8], and the weight matrix is broken into submatrix tiles. Each weight tile
is then decomposed into two orthogonal matrices (U andVT ) and a diagonal matrix of singular val-
ues (Σ) using SVD. Next, each of the three matrices is decomposed into its respective phase values
(ϕU ,ϕΣ,ϕV T ) using the phase decomposition algorithm [29]. SVD, tiling and phase decomposition
are performed only once upfront for each weight submatrix tile in the host CPU. Therefore, it does
not introduce a latency overhead during the inference. This one-time cost is discussed further in
Section 6. Importantly, the total number of phase values is equal to the number of elements in the
weight tile. Therefore, the memory footprint required for storing the decomposed parameters is
the same as that for storing the original tile. The phase values obtained from above can be directly
programmed into the MZI array, as shown in Figure 1(b).

In our WS approach, the weight values of a tile are first transferred from the weight SRAM into
the weight buffer. Data from the weight buffer can be programmed into the photo-core at a rate
limited by the modulation mechanism of the MZIs—during which the photo-core is inoperable.
This overhead is unavoidable but it is fairly small ∼10 ns [103]. Once the tile is loaded into the
photo-core, the values are maintained in the MZI array while all input vectors that need to be
multiplied with this particular tile are fed into the photo-core vector-by-vector. WS dataflow is
critical to minimize the number of times we update the values in the MZIs and to amortize the
power latency cost of programming the MZI array.

Figure 1(b) also shows an example of how the input and output vectors are programmed and
read out, respectively. Each element of the input vector is programmed using an MZM and a phase
shifter that encode the amplitude and the sign (0 or π ) of the input optical signals, respectively.
The output vector (m × 1) of the MVM operation (both amplitude and sign) is detected using m
coherent detectors with the help of a local oscillator. The resulting photocurrent is eventually
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converted into digital bits, using 8-bit ADCs. The input and the weight DACs are chosen to be
10-bit and 12-bit precise, respectively, which are adequate to guarantee 8-bit precise outputs (see
Section 3.1.5). The obtained partial results are accumulated digitally to construct the final output.
Due to our WS approach, the partial output vectors generated by a weight tile do not contribute to
the same final output result. We write all the partial output vectors generated by the first weight
tile of a weight matrix to the activation SRAM. The partial output vectors generated by the next
weight tile of the weight matrix are added to the partial output vectors stored in the SRAM and the
accumulation result is written back to the SRAM array. This process is repeated for all the weight
tiles of the weight matrix.

This approach requires extra SRAM reads and writes for accumulation compared to an output

stationary (OS) dataflow. However, OS is not efficient in our architecture, because it would require
updating the values programmed into the MZIs each cycle. Such a large modulation bandwidth
(i.e., in the orders of GHz) cannot be achieved with the NOEM-based MZIs used in our design
(with only ∼100 MHz bandwidth). There are MZI designs using p-n or p-i-n junctions that can be
modulated at such large bandwidths, but they introduce a higher insertion loss (≥1 dB per MZI)
that limits the scalability of the array due to high power consumption.

As an alternative option, one can also consider an IS approach where the input matrix, instead of
the weight matrix, is programmed into the MZI array. However, while similar to the WS approach,
the IS approach is also not suitable for the architecture of our photo-core. This is because the input
matrix of a DNN layer is the output of the previous layer and is computed at runtime. Therefore,
SVD and phase decomposition algorithms, both of which have the same computational complexity
of a GEMM operation, will also need to be performed on the input matrix (that is programmed into
the array) at runtime instead of being performed offline.

3.1.3 Digital Electronic Processing Unit. Although more than 90% of the operations are GEMM
operations, a non-trivial amount of non-GEMM operations must also be performed as part of DNN
inference. These operations include element-wise non-linear operations (e.g., ReLU, GELU, and
sigmoid), reduction operations (e.g., softmax and max-pool), batch and layer normalizations, and
element-wise multiplication and addition (e.g, bias). As discussed in Section 2.3, these non-GEMM
operations are more effectively performed in the digital domain instead of the analog domain.

To maintain the balance between the analog and digital parts of ADEPT, within the digital elec-
tronic ASIC, we use the same number of vectorized processing units as the photo-cores. The mi-
croarchitecture of a single vectorized processing unit is shown in Figure 1(c). In each vectorized
processing unit, we use the same number of lanes as the number of optical lanes (channels) in
one photo-core such that output of each optical lane in the photo-core is fed to one lane in the
vectorized processing unit via the activation SRAM. Each lane has separate units for multiplica-
tion, addition, division, max, square root, and exponential operations (each 32-bit) that enable the
system to complete the wide variety of non-GEMM operations. These arithmetic units are imple-
mented as custom digital CMOS circuits. All lanes in the vectorized processing unit can operate
in parallel and can be pipelined for non-GEMM operations that require multiple arithmetic oper-
ations. Each arithmetic unit uses a multiplexer to choose the input from (1) the activation SRAM,
(2) the output of the arithmetic units, or (3) the register files of the vectorized unit, as operands.
Here the register files (64 KB each) are used to store the constants (which are loaded up front) for
the non-GEMM operations or the outputs of the arithmetic units. Multiplexers are controlled by
a scheduler that decides when each arithmetic operation is used. The outputs of digital electronic
ASIC are written back to the activation SRAM—to be used in the next layer of the DNN.

To extract the maximum performance from ADEPT, we need to match the throughput of the
photo-core and the digital electronic ASIC. It is, however, challenging to design a digital ASIC that
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can operate above 2 GHz. Hence, we use n logical units in parallel for each operation within the
individual vector lane. Each unit operates at 1/n times the clock frequency fc of the photo-core
(each offset by 1/fc to one another) to match the throughput of photo-core.

3.1.4 Data Movement and Storage. ADEPT utilizes two separate SRAM units: one for in-
put/output activations and one for weights. The SRAM units can transfer data between each other
through direct memory access and communicate with the host and DRAM through the PCI-e fabric.
The two SRAM units are separated, because, generally, a dichotomy exists between the activations
and the weights, and data transfer between them is not frequent. The activation SRAM is used to
store both input and output activations, because, effectively, the output of one layer is the input
of the next layer. At runtime, both the photo-core and the digital electronic ASIC read and write
a vector of size m (the size of the photo-core) from and to the activation SRAM. We use separate
dedicated read/write ports in the activation SRAM for the photo-core and the digital electronic
ASIC.

Transferring a complete weight tile (m × m) from weight SRAM to photo-core in one step re-
quires a large SRAM bandwidth. In contrast, transferring one vector at a time requires a large
latency in between tiles. Hence, we use a weight buffer for each photo-core as an intermedi-
ate stage. We load the tile for the next set of GEMM operations into the weight buffer, while
the photo-core is performing GEMM operations with the current weight values. The data from the
weight buffer are then programmed into the photo-core in ∼10 ns [103], minimizing the latency in
between consecutive tiles in the photo-core and increases the photo-core’s overall utilization and
the system throughput.

3.1.5 Numerical Precision and Accuracy. Maintaining numerical precision during DNN compu-
tation is one of the main challenges when computing with an analog core. A similar problem exists
in photonic computing: The numerical precision of the output vector vout is limited by how well
one can encode the input vector vin and the matrix M . The error of the weight matrix M can be
calculated by considering that all classical photonic operations (in our case, these are the transfor-
mations afforded byU , Σ, andVT ) are unitary/orthogonal transformations. We are then primarily
interested in obtaining the magnitude of the total perturbation of the weight matrix M , which can
be defined as

ΔM =

√
〈‖ΔU ‖2〉 + 〈‖ΔΣ‖2〉 + 〈‖ΔV ‖2〉. (2)

The error of each matrix can be quantified by its normalized Frobenius norm ‖ΔX ‖2 =∑
i j |ΔXi j |2/m, such that ΔX =

√
‖ΔX ‖2, where X is a placeholder for U , Σ, and VT .

Two realistic device limitations contribute to the perturbation of each transformation: phase
encoding error and component error that can cause crosstalk [11, 86, 93, 115]. We consider the
error of the phase encoding to be quantified as εϕ ≤ 2−bw , where bw is the bit precision of

the weight DAC. The error induced by a single-phase setting error is ‖ΔX ‖2 ≈ ε2
ϕ
/m [11]. For

the component error, given that the matrix is composed of MZIs, which only use 50:50 DCs, we
only need to consider the DC splitting error. The matrix perturbation induced by a single DC error
εDC (typically due to fabrication imperfections) is ‖ΔX ‖2 ≈ 2ε2

DC/m [11].
Realistically, fabrication imperfections are often correlated: neighboring DCs will be perturbed

in a similar manner. However, correlation can add significant complexity, obfuscating mathemati-
cal insight. Monte Carlo simulation tools should be used to quantify the errors when correlations
exist. For the remainder of the calculation, we assume an uncorrelated error model for both the
encoding and the component errors.
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The error terms can be added in quadrature under the uncorrelated error model.1 In each MZI,
there are two DCs and a single-phase shifter. In the Σ matrix, there are onlym parallel MZIs, thus
〈‖ΔΣ‖2〉 = ε2

ϕ
+ 4ε2

DC. In the matrices U and VT , there are m(m − 1)/2 MZIs. The depth of the

photonic circuits in M grow as O (m), and component errors cascade as light propagates down
the mesh. A naïve programming of the phases will result ΔM that grows as O (m1/2ε ) [29, 77].
However, a more sophisticated error-corrected programming strategies [11, 40, 41] can achieve a
better scaling with respect to the component errors, such that the error grows asO (m1/2εϕ+mε2

DC),

which is advantageous when εDC ≤ m−1/2.
More sophisticated error-corrected programming strategies [11, 40, 41], however, can achieve a

better scaling with respect to the component errors, such that

〈‖ΔU ‖2〉 = 〈‖ΔVT ‖2〉 = m(m − 1)

2

⎡⎢⎢⎢⎢⎣
ε2

ϕ

m
+ 2

2ε4
DC

3m
(m + 1)

⎤⎥⎥⎥⎥⎦ , (3)

where the first term in the square bracket is the contribution due to phase encoding error and the
second is due to component error. The corrected programming strategy effectively allows for a
squaring of the component errors that is advantageous when εDC ≤ m−1/2. Finally, the error for
the overall matrix M can therefore be defined as in Equation (2).

The precision of the input and output vectors can now be quantified by adding the errors in
quadrature: Δv2

out = Δv2
in +ΔM2. The error of the input vector encoding Δvin ≤ 2−bin is quantified

by the bit precision of the input DACs bin. The output vector will be captured by ADCs with a
bit precision of bout. For the output vector error to be dominated by the ADC precision, we have
Δvout must be ≤ 2−bout . Assuming a reasonable DC splitting error of < 0.1 % (this quantity should
be measured in the fabricated silicon photonic wafer), we can determine that the precision of the
output vector can be maintained up to ∼8 bits for matrices up to size 256× 256 if the input and the
weight DAC bit precisions are 10 and 12 bits, respectively. We use these bit precisions in designing
our hybrid electro-photonic accelerator.

The discussion above provides important intuition as to how errors compound in an analog
photonic computer. The analysis effectively relates the signal-to-noise ratio (SNR) of the DACs
with the SNR of the output ADC. Note that the input and the weight data to be encoded in the
photonic GEMM device can have fewer than bin and bw bits, respectively—they just have to be
encoded using DACs with SNRs commensurate to the prescribed bit precision.

3.2 Optimizations

In this section, we explain the optimizations that help us efficiently orchestrate the operations in
ADEPT, reduce the latency overhead caused by the non-GEMM operations and data transfers, and
maximize the system performance.

3.2.1 Pipelining Operations. We pipeline GEMM and non-GEMM operations in ADEPT. Specif-
ically, once an output vector (after accumulating the partial output results) of a GEMM operation
has been generated, that output vector is immediately sent to the digital electronic ASIC for non-
linear operations. Therefore, non-GEMM operations begin without the need to wait for the whole
GEMM operation to be completed.

In addition, more than one layers including non-GEMM operations can follow one another,
or one layer may need to use more than a single logical unit. We further optimize ADEPT by

1Realistically, fabrication imperfections are often correlated: neighboring DCs will be perturbed in a similar manner. How-

ever, correlation can add significant mathematical complexity. Monte Carlo simulation tools should be used to quantify the

errors when correlations exist.
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pipelining these non-GEMM operations in the digital electronic ASIC. For example, the softmax
layer uses the exponential unit, the max unit, and the multiplication unit. While one element is
using the exponential unit, the previous output of the exponential unit uses the max unit. As a
result, as long as the data dependency is preserved, different non-GEMM operations or different
steps using different arithmetic units in the digital electronic ASIC within a non-GEMM operation
can be parallelized and pipelined.

3.2.2 Maximizing the Batch Size and Optimized Buffering. ADEPT’s throughput is limited by the
rate at which data are input into the photo-core. While the latency and bandwidth of activation and
weight SRAM arrays can be designed to match the throughput of the photo-core, the sizes of these
arrays are limited. If the activations and weights do not fit within these SRAM arrays, then frequent
DRAM accesses would be necessary. These DRAM accesses are slower compared to SRAM accesses
and can easily bottleneck the system performance. To avoid being bottlenecked by DRAM latency
during runtime, we may want to limit the batch size for a given neural network. However, larger
batch sizes provide a better throughput. We, therefore, propose an optimized buffering method that
maximizes the batch size stored in the activation SRAM without ever spilling back to the DRAM
during runtime. This method takes advantage of the empty space in the SRAM during inference
and loads the inputs of the next batch from DRAM efficiently.

We describe this optimized buffering method as a convex optimization problem. Let �xc =

[xc (t0), xc (t1), . . . , xc (tmax)] be a vector representing the activation SRAM array usage while
performing inference on a batch of activations over time. Here ti+1 = ti + Δt where Δt is some
time interval chosen to ensure the optimization problem is tractable for the host CPU. Similarly,
�xpcie = [xpcie (t0), xpcie (t1), . . . , xpcie (tmax)] is a vector representing the activation SRAM usage
of the data (next input batch) being transferred from DRAM into SRAM over time. For a given
�xc, an optimal �xpcie data transfer schedule can be obtained by solving the following optimization
problem:

Maximize:
tmax∑
t=t0

xpcie (t )

Subject to: 0 ≤ xc (t ) + xpcie (t ) ≤ xmax;
xpcie ≥ 0; xpcie (t−1) = 0; xpcie (tmax) = xinput;

0 ≤ Δxpcie (t ) ≤ Max. PCI-e bandwidth
The constraints in the optimization problem can be understood as follows: the total SRAM us-

age (1) should be less than the given SRAM size (xmax), (2) should not be negative at any time,
and (3) should start from zero; (4) the total amount of data transferred will be equal to the input
size of the next batch; and (5) the data transfer rate should be slower than the maximum PCI-e
bandwidth. The objective function is to maximize the area under the curve of memory usage of
the transferred data for the next batch. Maximizing this area guarantees transferring the data as

soon as possible under the constraint of a maximum PCI-e bandwidth. If the program fails to re-
turn a schedule xpcie (t ) that meets the specified constraints for a given batch size and maximum
PCI-e bandwidth, then a smaller batch size or a larger bandwidth (if it is available on the hard-
ware) should be chosen. We use the above optimization program to find the largest batch size that
ensures that the memory usage from storing activations of the current batch and the next batch
never exceeds the SRAM size. As such, we ensure that all DRAM data transfer for the next batch of
inputs can happen simultaneously with the inference of the current batch. The optimized schedule
is computed only once by the host CPU before runtime.

3.2.3 Parallelism. ADEPT can be scaled up to include multiple photo-cores. We offer two par-
allelization strategies for distributing the workload among multiple photo-cores: data parallelism
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Fig. 2. Execution model. Compilation process of an ML model for ADEPT.

and tile parallelism. Data parallelism aims to accelerate MVMs by copying the same weights to
all photo-cores. Each photo-core performs the same operations on different inputs in a batch.
Tile parallelism is a finer granularity model parallelism that distributes different tiles of a weight
matrix across multiple photo-cores. Unlike data parallelism, all inputs in one batch are sent to all
photo-cores.

ADEPT can also use WDM-based parallelism. WDM uses multiple wavelengths for encoding
different input vectors at once similar to data parallelism. The scheme requires multiplexing and
demultiplexing circuits that can be constructed from microring resonators [16] or cascaded unbal-
anced MZIs [110]. WDM parallelism is synonymous to data parallelism in terms of throughput,
but the same MZI array and weight DACs can be used by all inputs encoded in the wavelengths.

3.3 Execution Model

In this section, we describe the execution model for using ADEPT as part of the full-system. This
process is summarized in Figure 2. Here, we take a DNN model and compile it on the host CPU to
generate a program in the form of a graph on tensor types. We use ONNX models (exported from
the common frameworks, such as Pytorch) and a loader to build a high-level program graph whose
nodes are operations on higher-dimensional array datatypes. We create a directed acyclic graph
by using a cost-model-based partitioner and annotate nodes based on whether the operations will
be executed on a CPU or on the ADEPT device. We use an LLVM-based optimizer on the host CPU
for code generation along with the optimizations. We then expand the operations annotated for
execution on the ADEPT device into a stream of ADEPT instructions, and perform a scheduling
pass to achieve overlap of GEMM operations and non-GEMM operations. We use the annotated
program graph to optimize the schedule and pipeline compute on the host CPU and the ADEPT
device with communication between the two. The generated code for these three partitions are
linked with the corresponding libraries to produce two executable binaries: one for the host and
one for ADEPT. It should be noted that the host CPU performs the compilation only once and then
offloads the inference to ADEPT.

4 EVALUATION METHODOLOGY

In this section, we describe our evaluation approach when we compare ADEPT against SAs and
state-of-the-art accelerators. We provide power, performance, and area analysis for both stand-
alone GEMM cores, as well as for the full system. For our evaluation, we choose three DNNs:
ResNet-50[43], BERT-large [32], and RNN-T [44]. These three state-of-the-art networks—all part of
the MLPerf inference data-center benchmarks [78] in the offline scenario—represent the diversity
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in layer types, sizes, and shapes that we observe in DNNs. We combine architecture, circuit, and
device level analyses to evaluate the full system.

In regards to electronic designs, previous works explored GPUs, many-core architectures, SAs,
and so on, for accelerating DNNs [14, 70]. Broadly, SAs achieve a higher efficiency among these
different hardware solutions [70] by using dedicated MAC units and reducing data transfers. In fact,
they have been used as the main building block in many ASICs for DNN acceleration [22, 25, 52, 53].
In addition, SAs have a similar dataflow to ADEPT—which enables us to make a fair head-to-head
comparison for the same array sizes and investigate the benefit of using a photonic core over
a purely electronic core. Most of the evaluation section is dedicated to the comparison between
SAs and ADEPT. We also provide a comparison of ADEPT against state-of-the-art electronic and
photonic accelerators in Section 5.5 for completeness.

4.1 Architecture-level Analysis

We used a mix of SCALE-Sim [83] and RTL simulations for our architecture-level analysis. SCALE-
Sim is a simulator built for SA architectures. It takes the SA configuration (i.e., array size and
dataflow type) and the neural network configuration (i.e., layer sizes and batch size) as inputs, and
calculates the number of cycles needed to execute the neural network. The simulator also generates
traces for SRAM and DRAM reads/writes. We modified SCALE-Sim to model the performance of
the photo-core in ADEPT. The modifications were added on top of the existing WS dataflow in
SCALE-Sim, which is similar with the WS approach of the photo-core. These modifications include
adding the latency for programming the weight tile into the MZI array, adding the latency for
transferring the weights from the weight SRAM to the weight buffer and overlapping this data
transfer latency with continuing GEMM operations.

SCALE-Sim enables us to simulate our dataflow and directly compare the performance of the
photo-core with that of SAs. However, it only models GEMM operations. To evaluate non-GEMM
operations, we designed the digital electronic ASIC using SystemVerilog RTL. We also incorpo-
rated the optimizations described in Section 3.2 in our evaluation. For each DNN, we combined
the timing results obtained from SCALE-Sim and RTL simulations to get the overall performance.

4.2 Circuit/Device-level Analysis

For a realistic power, performance, and area comparison, we designed the digital electronic ASIC
units and SAs at RTL level and then synthesized them using Cadence Genus [2] with a standard
cell library designed in the GF22FDX technology node [3]. The SRAM arrays were generated using
an SRAM compiler for GF22FDX.

To minimize impact of slow DRAM transfers on performance, prior works have used large on-
chip memory arrays [54, 56]. We follow the same strategy. However, it is challenging to have a
single large SRAM array with low access latency. So, instead, we use multiple small sized SRAM
sub-arrays to build larger memory arrays. The SRAM sub-arrays were designed to have 64 KB
capacity with ∼1 ns access latency. For higher clock frequencies (fc > 1 GHz), we read from
multiple arrays, each offset by 1/fc ns with its neighbor. In total, we use 300 MB weight SRAM
and 100 MB activation SRAM. We acknowledge that not all our buses connecting the SRAM arrays
to the photo-core will have the same latency. For a 700 mm2 (reported in Section 5.4) chip size, the
latency is calculated as ∼1.2 ns (maximum 12 cycles for the 10 GHz system) for the longest distance
to travel (from one corner to the diagonally opposite corner) [51]. The throughput of the SRAM
accesses is matched with the system clock by operating each SRAM sub-array at 833 MHz, but
reading from the different SRAM sub-arrays every 100 ps.

The photo-core is powered by a laser. We calculated the required laser power per channel P
analytically by considering (1) the laser wall-plug efficiency, (2) the losses of the various optical
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devices, and (3) the SNR needed for an 8-bit output, as follows:

P =
(κ SNRshot)

2 · (q Δf /4)

ηdet · ηarray · ηmod · ηcpl · ηlaser
, (4)

where SNRshot is the SNR assuming shot noise only and κ (assumed to be ≈3) accounts for noise
contributions (e.g., thermal noise and transistor noise) other than the shot noise. The overall SNR =
κ SNRshot = 2bout with bout being the bit precision of the output ADC. Here q is the elementary
charge, and Δf is the bandwidth of the coherent detector (related to the clock frequency). The
η’s account for the transmissivity from the laser to the detectors. ηmod is the transmissivity of the
modulator (≈1.2 dB loss [5]),ηarray is the transmissivity of the MZI array (≈0.04 dB loss per MZI [72]
and each signal passes through 2m+1 MZIs),ηcpl is the fiber laser-to-chip coupling efficiency (≈2 dB
loss), ηdet is the efficiency of the photodetectors (≈80% [60]), and ηlaser is the wall-plug efficiency
of the laser (≈20% [67]). All the photonic devices in the photo-core are simulated using Lumerical
Maxwell-Equations solver FDTD and circuit-level simulator INTERCONNECT [1]. They have also
been fabricated in the GF90WG SiPh process and are characterized at multiple-wafer-scale with
the FormFactor CM300 wafer tester.

The necessary bit precisions for the inputs and the weights are 10 and 12 bits, respectively, to
guarantee the 8-bit-precise outputs read by the ADCs (see Section 3.1.5). Due to the lack of publicly
available DAC prototypes in GF22FDX with our desired precision, for our analysis, we used a
14-bit DAC [46] designed with 28-nm CMOS technology with a 10 GS/s sampling rate and 177-
mW power consumption. Note that the power consumption of 10-bit and 12-bit DACs will be less
than a 14-bit DAC. Therefore, we scaled the power numbers as follows: A widely accepted figure

of merit (FoM) for the performance of DACs is FoM = 2B · fs 

6(B−1) /PDAC. Here B is the bit

precision of the DAC, fs 

6(B−1) is the output signal frequency where the spurious free dynamic

range has dropped with 6 dB (= 1 bit) in comparison with the expected results (≈ 6B), and PDAC is
the power consumption of the whole DAC [58]. In essence, the power consumption of a DAC—with
the same FoM—is proportional to 2B . Therefore, a 12-bit DAC (for the weights) with the same FoM
will consume 22 = 4 times less power than a 14-bit DAC. Similarly, a 10-bit DAC (for the inputs)
with the same FoM will consume 24 = 16 times less power than a 14-bit DAC. The 10-bit input and
12-bit weight DACs will then consume 11.06 and 44.25 mW, respectively. Similarly to DACs, we
use 10-bit ADCs in 28-nm technology at the output. Within the 10 ns settling time constraint of
the MZIs, a single 10 GS/s DAC can be used to program 100 weights into MZIs. Therefore, instead
of using m2 DACs, we use 
m2/ζ � DACs for weights where ζ is equal to 100. Each ADC has a
5 GS/s sampling rate and consumes 29 mW [39]. The 10-bit inputs require a high ER in the input
modulators. This can be achieved by using active optimization approaches [65, 107]. We use two
additional MZIs per modulator as variable beam splitters for obtaining a perfect 50:50 splitting in
both ends of the modulator. In addition, an equalized phase-dependent loss between the two middle
arms can be achieved if the MZM is driven in a differential push-pull manner. The electronic-
to-optical (E-O) and O-E conversion power is based on the total energy required to operate the
modulator circuitry, which is ∼20 fJ/bit, and the detector circuitry, which is ∼297 fJ/bit [95]. Each
DRAM access is assumed to be 20 pJ/bit [45]. The die-to-die interconnect between the photonic
and electronic chiplets consumes 0.3 pJ/bit [31]

5 EVALUATION RESULTS

Our evaluation focuses on answering two questions: (1) How do we build a complete electro-
photonic accelerator architecture that is not bottlenecked by the slower electronics? and (2) How
much are the electro-photonic accelerator systems better than purely electronic accelerator
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systems, when we consider the system as a whole, i.e., accelerator + memory + host processor +
communication, running practical real-world applications?

In Section 5.1, to set the stage, we first provide a detailed comparison of stand-alone photo-core
against electronic SAs. This comparison helps us determine the ADEPT design that we should use
for exploring different architecture optimizations as well as for performing full-system analysis. In
Section 5.2, we evaluate the impact of optimizations we introduced in Section 3.2, and in Section 5.3,
we analyze the different parallelism methodologies. While these first three sections answer the
first question, Section 5.4 answers the second question by comparing the complete ADEPT-based
system where all the components and optimizations are taken into account against a similar system
where photo-core is replaced with a same-sized SA. Last, in Section 5.5, for completeness, we
provide a comparison of ADEPT against state-of-the-art electronic and photonic accelerators.

5.1 Photo-core vs. SAs

The photo-core utilizes light, which oscillates at hundreds of terahertz, and so it has a significant
bandwidth advantage over the electronic SAs. The bandwidth in the photo-core is typically lim-
ited by the sampling rate of data converters (considered up to 10 GHz in this work), while SAs
are constrained due to parasitic resistance, capacitance, and inductance. In fact, in the case of SAs,
Cadence Genus with GF22FDX failed to meet the timing requirements for 2 GHz and above. There-
fore, we used parallelism instead to effectively operate the SA at higher frequencies. For example,
to operate a SA at 10 GHz, we used ten 1-GHz SAs whose clock cycles are offset by 100 ps. The
latency of this parallelized SA will still be 1 ns, but its throughput will be synonymous to a single
SA operating at 10 GHz. For this analysis, we assume both photo-core and SA are isolated from
the system, weights and inputs have been loaded and are available in the SRAM with reads/writes
fast enough to keep up with the requirements of both arrays. To provide SAs a strong baseline,
we considered OS, WS, and IS for SAs as dataflow can have a significant impact on SA’s perfor-
mance. Figure 3(a) shows the throughput we can achieve when using the three dataflows for SAs
for three different benchmarks. We observe that OS performs better than WS and IS for SAs. This
is because of the high latency of loading data into the SA between tiles for WS and IS dataflows.
Therefore, from here onwards, we use OS for SA in the rest of the comparison.

5.1.1 Throughput. For the throughput comparison, we use a single 128 × 128 array (the choice
of size is justified later in this section) for both the photo-core and the SA. Figure 3(a) shows the
comparison between the performance of the photo-core (when using WS dataflow) and that of
the SA operating at 1 GHz clock frequency for different batch sizes for three different networks—
ResNet-50, BERT-large, and RNN-T (one plot per network). In photo-core, by pipelining the weight
transfer from weight SRAM into the weight buffer with GEMM operations, we reduce the latency
of loading the weights down to 10 ns, the minimum required by MZIs (see Section 3.1.2 and 3.1.4).
In general, photo-core’s WS dataflow is more advantageous compared to the OS SA when the
weight matrices are large and the input matrices are small (e.g., RNN-T with small batch sizes),
because each weight tile needs to be loaded only once.

Throughput vs. Batch Size. From Figure 3(a) we can see that as the batch size increases, through-
put (and correspondingly utilization) of the arrays increases and eventually saturates. Among the
three DNNs, we observe that the throughput saturates for ResNet-50 and BERT-large more quickly
than RNN-T. This is because the small input matrices in RNN-T means that fewer number of vectors
are multiplied with the same tile. Thus, the utilization and throughput continue to significantly
increase until we have larger batch sizes for RNN-T. In addition, as the batch size increases, la-
tency in between tiles becomes less important, because more time is spent on performing MVM
operations in each tile.
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Fig. 3. Photo-core vs SA comparison in terms of throughput (IPS), power (W), and power efficiency (IPS/W).

(a) Throughput vs. batch size of 128 × 128 photo-core (PC) and SAs with OS, WS, and IS dataflows at 1 GHz

clock. (b) Power consumption of the OS SA (1, 3 × 1, 5 × 1, and 10×1 GHz clock) and the WS photo-core (1,

3, 5, and 10 GHz clock), for different array sizes. For the photo-core we report power in laser (solid color),

ADCs/DACs (white diagonal pattern) and E-O/O-E conversion (black diagonal pattern). (c) Power efficiency

(in IPS/W) of OS, WS, IS SAs (1, 3 × 1, 5 × 1, and 10 × 1 GHz clock) and WS photo-core (1, 3, 5, and 10 GHz

clock) for different array sizes. Here fc × 1 GHz SA indicates that we use fc SAs in parallel, each operating

at 1 GHz.

Throughput vs. Operating Frequency. One way to increase the throughput of any computing
device is to increase the clock frequency. We therefore attempt to increase the clock frequency
of the photo-core and the SAs (from 1 to 3, 5, and 10 GHz). The throughput of the SAs increases
linearly with the clock frequency. The rate of MVM operations in the photo-core also increases
linearly with the clock frequency. However, a fixed 10-ns period is necessary for programming the
MZI array and is independent from the clock frequency. Therefore, the increase in the throughput
of the photo-core is sub-linear.

5.1.2 Power Consumption. Figure 3(b) compares the average power consumed by the WS photo-
core (laser, ADC/DAC, and E-O/O-E conversion) and the OS SA of different sizes. For this analysis,
we use a batch size of 256 to ensure that the throughput is nearly saturated for all networks. Overall,
the photo-core’s power consumption is smaller than the SA counterpart up to an array size of
256 × 256.

For the SAs, the power consumption increases linearly with the number of processing ele-

ments (PEs) (quadratically with the array size). For the photo-core, the laser power increases
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exponentially with the depth m of the array. This is because the linear increase in the number of
optical devices on an optical channel causes an exponential impact on optical power loss (in watts)
in the propagating signal. As a result, it can be seen in Figure 3(b) that laser power increases drasti-
cally as the tile size gets larger and dominates the power consumption for large array sizes. For an
m × m photo-core, we need m DACs and m E-O conversion circuits for the input vector, and m
ADCs and m O-E conversion circuits for the output vector. These input/output DACs/ADCs per-
form a conversion each cycle. Additionally, we need DACs for programming the m ×m weight
matrix. These DACs for programming the weights into the MZIs are not used each cycle. The
weights are programmed into the MZI once for each tile, and the DACs are not used until all
MVMs for the corresponding tile are finished. The average power consumption of DACs/ADCs
increases as the array size increases, because the latency drops. Effectively, the same number of
conversions are performed within a shorter duration of time.

5.1.3 Power Efficiency. Figure 3(c) shows the power efficiency (IPS/W) of electronic SAs and
photo-cores for different array sizes and frequencies. We observe that, for the photo-core, 128×128
is the most power-efficient array size for all three networks and all four clock frequencies. This
can be explained by the fact that beyond a certain size, the laser power starts dominating the
power consumption of the photo-core. Additionally, beyond a certain array size, the utilization
decreases and so the throughput saturates. Therefore, due to the exponentially increasing laser
power and saturating throughput, we observe a drop in the power efficiency beyond an array size
of 128 × 128. For SAs, the power increases quadratically with the array dimension m. However,
because the throughput increases less than quadratically with m, the power efficiency decreases
as the array size increases.

Across different frequencies and array dimensions, we observe that photo-core can provide up
to 9.87×, 9.32×, and 7.69× better power efficiency than OS SA for ResNet-50, BERT-large, and RNN-
T, respectively, when only GEMM operations are considered. Overall, we observe that for the same

clock frequency, while the throughput is comparable, photo-core provides a better power efficiency

than the best performing SA. As we show that 128 × 128 is the most power-efficient array size for
the photo-core, we will use this array size for the further evaluations.

5.2 Optimizations

As discussed in Section 3.2, non-GEMM operations and data transfers introduce latency and energy
overhead and are important in system evaluation. In this section, we quantify these overheads and
show the impact of the optimizations we apply on performance of ADEPT for different types of
DNNs.

5.2.1 Pipelining. Figure 4 shows the impact of pipelining operations on the inference time of
ADEPT when running ResNet-50, BERT-large, and RNN-T. For ResNet-50, the max-pool, average-
pool, ReLU activations and softmax layers; for BERT-large, the layer norm, GELU, and softmax
operations; and for RNN-T, the element-wise addition and multiplication, sigmoid, and tanh op-
erations (within an LSTM layer) are computed in the digital electronic ASIC. The non-GEMM
operations comprise a small percentage of the networks’ operations, but they can lead to a large
overhead if not pipelined carefully. When pipelined, the non-GEMM operations and the GEMM
operations can be performed in parallel.

In Figure 4, we can see that ResNet-50 has the least amount of overhead due to non-GEMM
operations. With batch normalizations folded, ReLU becomes the most frequent non-GEMM op-
eration, which can be effectively overlapped with the GEMM operations. In BERT-large and
RNN-T, the division and exponential operations in GELU, softmax, sigmoid, and tanh increase the
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Fig. 4. Pipelining evaluation. Latency of ADEPT with a 128× 128 photo-core operating at 10-GHz clock with

and without pipelining the GEMM and non-GEMM operations. Here the latency is for one batch of inputs

for three networks. The results are calculated for varying batch sizes.

number of cycles spent in the digital electronic ASIC. As batch size increases, GEMM operations are
performed more efficiently, because more input vectors are multiplied with the same tile—weights
are re-used more frequently. However, the cycles spent on non-GEMM operations increase linearly
with batch size. Effectively, we observe a larger increase in the time spent on the non-GEMM op-
erations than the increase in time spent on the GEMM operations with increasing batch size. As
a result, a smaller portion of the non-GEMM operations can be overlapped with the GEMM oper-
ations. We observe a reduction in latency of up to 5.73% in ResNet-50, 43.03% in BERT-large, and
48.22% in RNN-T when we pipeline the non-GEMM and GEMM operations.

5.2.2 Optimized Buffering. Until now, we used a large batch size of 256 to evaluate the saturated
throughput of both ADEPT and SAs. However, given that the SRAM arrays have limited sizes, an
inference with batch size of 256 may not fit within the activation SRAM.

For this analysis, we choose a 100 MB activation SRAM and a 300 MB weight SRAM to ensure
that the weights of all the three networks can comfortably fit within ADEPT. Figure 5 shows the
usage of the activation SRAM array for the current batch and the next batch when using our
optimized DRAM access mechanism (see Section 3.2.2). We limit the batch size to the maximum
value where inference on the entire batch can be completed without any DRAM transfers (58,
88, and 50 for ResNet-50, BERT-large, and RNN-T, respectively). The activation SRAM stores the
inputs and outputs of all GEMM and non-GEMM operations over time. If the GEMM and non-
GEMM operations are running at the same time (pipelined), then the memory usage includes both
of the operations’ activation data. Figure 5 shows that the networks do not use the whole SRAM
array throughout the inference. This creates an opportunity to transfer the inputs for the next
batch.

We compare the performance of our optimized buffering technique against double buffering [84]:
a common method for minimizing the impact of data transfer latency. In double buffering, one half
of the memory is used for the current inference while the other half is used for transferring the
inputs for the next inference. As a result, the maximum batch sizes of this scheme, for the three
networks, are half of those of the optimized buffering scheme. For ResNet-50 and BERT-large,
optimized buffering technique increases the throughput only by 1.3% and 0.4% compared to double
buffering. This is because these two networks have already high utilization in the photo-core and
their throughputs are saturated for the considered batch sizes. Remarkably, however, optimized
data transfer increases the throughput of RNN-T by 89.7% over double buffering.
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Fig. 5. Activation SRAM usage for computing on the current batch of inputs along with data transfer for the

next batch of inputs within ADEPT. Both input and output activations for the current batch must be stored

in the activation SRAM (dark blue) while the input data are transferred for the next batch (light blue). A

128 × 128 photo-core at 10-GHz clock is used with batch sizes of 58, 88, and 50 for ResNet-50, BERT-large,

and RNN-T, respectively, to fully use the 100-MB activation SRAM capacity.

Fig. 6. Impact of optimizations. Roofline plot showing the effect of optimizations on ADEPT with a single

128 × 128 photo-core. The arithmetic intensity is calculated using MAC operations over activation SRAM

reads/writes.

Impact of Optimizations. Figure 6 summarizes the impact of the two optimizations—pipelining
and optimized DRAM buffering, on ADEPT at a system level. The roofline is the peak throughput
of the photo-core, and the memory ceiling is derived from the bandwidth of the activation SRAM.
The baseline (no optimization) refers to the case without any pipelining and with double buffering.

Comparing the three networks, ResNet-50 has a smaller arithmetic intensity (AI) and is memory-
bound. We see that the performance of ResNet-50 without the optimizations is close to the roofline;
thus, further optimizations only marginally improve the performance. BERT-large significantly
benefits from pipelining with a 1.76× better throughput because of the frequent non-GEMM op-
erations. In contrast, using the optimized DRAM buffering, which enables us to use larger batch
sizes compared to double buffering, does not help because of the already saturated utilization of
the photo-core for small batch sizes. RNN-T has a lower utilization compared to the other two
networks. The utilization is mainly limited by the recurrent nature of the network, which requires
frequent change of weight tiles and the frequent non-GEMM operations in the LSTM layers. There-
fore, increasing batch size by using the optimized DRAM buffering increases the performance
significantly—by 1.92× and pipelining improves the throughput for RNN-T by 1.83×.

The analysis presented in this section highlights the importance of taking non-GEMM opera-
tions and memory limitations into account and using different types of DNNs for evaluation. The

non-GEMM operations and memory limitations limit the throughput of photo-core, but it is possible
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Fig. 7. Parallelism evaluation. Latency of ADEPT (128× 128 photo-core at 10 GHz clock) when executing the

three neural networks with different photo-core counts using data parallelism and tile parallelism.

to go around these limitations and improve the performance by using the right optimizations such as

pipelining and efficiently buffering the data.

5.3 Parallelism

We consider three types of parallelism: data parallelism, tile parallelism, and WDM parallelism
(see Section 3.2.3). Figure 7 shows how the latency scales with increasing number of photo-
core counts for both data and tile parallelism. We use the batch sizes previously considered (see
Section 5.2.2), i.e., 58, 88, and 50 for ResNet-50, BERT-large, and RNN-T, respectively. We keep
these values constant as we increase the number of photo-cores.

Data parallelism provides an almost linear decrease in inference latency with increasing photo-
core count when the number of input vectors within a batch is large enough to be shared among
the photo-cores. The latency is dominated by MVM operations for large inputs sizes, and so as
the number of photo-cores increases, the throughput proportionally increases. We observe this
in ResNet-50 and BERT-large where the input matrices are large enough to be spread among the
photo-cores and we can maintain high utilization. In contrast, when the number of input vectors
per core decreases, the reduction in latency saturates due to the decrease in the utilization of
the photo-cores. We observe this in RNN-T. Data parallelism provides 11.30×, 14.47×, and 1.11×
lower latency for ResNet-50, BERT-large, and RNN-T when we increase the photo-core count from
1 to 16.

The advantage of tile parallelism is limited by the number of tiles in a GEMM layer. The net-
works with larger weight matrices (i.e., BERT-large and RNN-T) better exploit this parallelism. Tile
parallelism provides 11.24×, 16.0×, and 4.62× lower latency for BERT-large, RNN-T, and ResNet-50,
respectively, when the photo-core count increases from 1 to 16.

Multiple photo-cores means a linear increase in the area and the power consumption for the ana-
log photonic computing unit. WDM provides an opportunity to reduce this area increase. WDM
allows the input vectors to be mapped across the different wavelengths that are routed to same
photo-core. Therefore, WDM offers the same throughput as data parallelism without using multi-
ple copies of the MZI array and weight DACs. When we compare data parallelism with n photo-
cores against a single photo-core leveraging n wavelengths in WDM, the photo-core with WDM
uses (n − 1) m2 fewer MZIs and (n − 1) m2/ζ fewer weight DACs.

This WDM approach is, however, limited by the amount of optical power that can be injected
into a single waveguide. High optical power causes strong nonlinear absorption in the waveguide
and the peak optical power is limited to ∼30 mW for ensuring signal integrity [19]. For a 128×128
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Fig. 8. Average total (static and dynamic) power distribution and area distribution of ADEPT (128 × 128, 10

GHz photo-core) and the SA system (128 × 128, 10 × 1 GHz array, OS dataflow).

array operating at 10 GHz with a single wavelength, the peak laser power per waveguide is 20.7
mW, which is under the 30-mW limit. If we want to leverage WDM, then we need to scale down
the photo-core size so that the total injected optical power stays under the nonlinearity limit. For
example, for multiplexing 2 wavelengths in an optical waveguide, we need to reduce the photo-
core size to 64 × 64. This configuration achieves 1.4× better IPS/W/mm2 compared to two 64 × 64
photo-cores with a single wavelength and 1.23× better IPS/W/mm2 compared to a single 128×128
photo-core with a single wavelength, on average among the three evaluated networks, ResNet-50,
BERT-large, and RNN-T, when all cores are operating at a 10-GHz clock frequency.

5.4 System-level Comparison

In this section, to answer the main question of how much the real benefit in a complete system is,
we include all the components of the system and the optimizations discussed in Section 3.2, and
provide a full system-level comparison between 128× 128 WS ADEPT and a 128× 128 OS SA (see
Figure 8).

From Figure 8, we can see that the optical devices in the photo-core (i.e., laser, MZIs, modu-
lators) used for the GEMM computation take up only between 10 and 35% of the overall power
consumption in the ADEPT system depending on the DNN model. The other components of the
system (i.e., ADCs/DACs, O-E/E-O conversions, die-to-die communication, and SRAM) consume
significant power—which proves the necessity of the system-level evaluation. For the SA, data
transfer between the register files of the PEs dominate the power consumption of the SA system.
We observe that SRAM dominates the area distribution for both electronic SAs and ADEPT for the
chosen configuration.

In ADEPT, the photo-core and the digital electronic ASIC are in different chiplets to take advan-
tage of the technology nodes that provide the best performance for each individual electronic and
photonic ICs. The two chiplets are 3D integrated through an interposer. In the latter, the SA and
the rest of the electronic components share the same chiplet. The optimizations used for ADEPT
are also applied to the SA system.

Our analysis shows that a system with ADEPT consumes 4.88× (109.8 W vs. 22.48 W), 3.42×
(61.7 W vs. 18.06 W) and 9.55× (74.0 W vs. 7.75 W) less power for ResNet-50, BERT-large, and
RNN-T, respectively. This translates to 4.89×, 3.24×, and 9.06× better power efficiency (IPS/W).
Also, ADEPT provides 4.5×, 2.97×, and 8.34× better power-area efficiency (IPS/W·mm2) compared
to a SA. This shows us that although including the system components in evaluation decreases the
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Table 2. Comparison against State-of-the-Art Electronic and Photonic Accelerators

ADEPT (This work) Eyeriss [22] Eyeriss v2 [25] UNPU [57] TPU v3 [52]

Tech Node 90-nm photonics + 22-nm CMOS 65 nm 65 nm 65 nm 16 nm
Clock rate 10 GHz 200 MHz 200 MHz 200 MHz 940 MHz
Benchmark AlexNet ResNet-50 AlexNet AlexNet AlexNet ResNet-50
Batch size 192 58 4 1 15 N/A
IPS 217, 201 35,698 35 102 346 32,716
IPS/W 7,476.78 1,587.99 124.80 174.80 1,097.50 18.18
IPS/W/mm2 10.59 2.25 10.18 N/A 68.59 0.01

Table 3. Comparison against State-of-the-art Photonic Accelerators

ADEPT (This work) Albireo-C [91] DNNARA [71] HolyLight-A [61]

Clock rate 10 GHz 5 GHz 1.2 GHz 1.28 GHz
Benchmark AlexNet ResNet-50 AlexNet ResNet-50 AlexNet
Batch size 1 192 1 58 1 1 N/A
IPS 6,478 217, 201 12,641 35,698 7,692 9,345 50,000
IPS/W 872.17 7,476.78 1,021.17 1,587.99 344.17 100 900
IPS/W/mm2 1.23 10.59 1.59 2.25 2.75 0.45 40.07

performance of the stand-alone photo-core, we can still benefit from using photo-cores instead of SAs

in a system.

5.5 Comparison against DNN Accelerators

For completeness, in this section, we compare the full ADEPT system against state-of-the-art elec-
tronic [22, 25, 52, 57] and photonic [61, 71, 91] accelerators.

5.5.1 Electronic Accelerators. Besides the traditional SAs, more flexible electronic accelerator
architectures have been proposed and shown to perform more efficiently. Table 2 compares ADEPT
against state-of-the-art electronic accelerators. Much of the prior work focuses on AlexNet, and
so we added ADEPT’s results for AlexNet. Broadly, for AlexNet and ResNet-50 inference, while
is not the most area efficient, ADEPT provides at least 6.8× higher IPS/W than other electronic
accelerators.

5.5.2 Photonic Accelerators. In Section 2, using Table 1 we discussed that previous works on
photonic accelerators have not provided a full system evaluation. For completeness, in Table 3 we
provide a quantitative comparison against the state-of-the-art photonic accelerators. The numbers
reported in Table 3 are highly dependent on the various design choices, i.e., careful consideration
of optical device choices, ADC/DAC choices, the on-chip memory sizes, non-linear units, commu-
nication links, and so on, and the comprehensiveness of the evaluation. Previous works use very
small on-chip memory arrays (in KBs). These small on-chip memory arrays have a small area and
power consumption but require frequent DRAM transfers. Not all previous works have considered
this DRAM transfer overhead. When designing ADEPT, we considered the sizes of the weights and
the activations of the neural networks. The high throughput goal of the system necessitates an ad-
equately large SRAM array that enables the DNN inference to run without being bottlenecked by
the off-chip data transfers. We can see that the full system of ADEPT is not the most area efficient
(due to large SRAM arrays), but it can provide 2.5× better IPS/W than Albireo-C and 10.2× better
IPS/W than DNNARA for the same batch size of 1. Although the batch size is not reported in Holy-
Light, ADEPT’s and HolyLight’s power efficiencies are comparable when ADEPT uses a batch size
of 1. However, ADEPT’s activation SRAM array is adequate to store even larger batch sizes, which
increases the utilization of the photo-core—providing a better overall system performance. When
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the maximum batch size is used for ADEPT, it can provide more than 8.3× better power efficiency
compared to the other three photonic accelerators.

It should be noted that the goal of this article is not to claim a more performant photonic core. In

contrast, we aim to highlight the importance of a system-level analysis when evaluating photonic

accelerators and encourage the community to adopt a pragmatic approach. The reasons that we
achieve better results compared to other photonic accelerators despite their lack of system-level
analysis can be listed as (1) we use low loss MEMS-based MZIs [72] (0.04 dB) enabling a power
efficient large (128 × 128) MZI mesh in ADEPT, (2) we use large SRAM arrays enabling large batch
sizes and better utilization of the photo-core, and (3) the choice of data converters (ADCs/DACs)
is different in different designs.

6 DISCUSSION

We sought to develop a balanced architecture that benefits from accelerating GEMM using pho-
tonics (1) without being bottlenecked by digital electronic operations or storage overhead and
(2) more than compensates for the overheads of electrical-optical and analog-digital conversions.
To this end, it is essential to carefully formulate performance metrics to clearly see the system-
level benefit of using photonics. In particular, we use IPS as the throughput performance metric
instead of TOPS. The TOPS metric fails to consider processing unit utilization that is not likely to
be unity.

In our proposed architecture, we perform electrical-optical and analog-digital conversions for
input and output vectors each cycle. Although the overhead of performing conversions can im-
prove with the process technology developments, it will remain a fundamental limitation for the
speed and efficiency of the system. Hence, it may be worth performing more operations in the
optical domain. However, this increases losses in optical devices that lowers SNR and lowers bit
precision (see Equation (4)). Similarly, the limited bandwidth of MZI leads to a 10-ns weight pro-
gramming latency that limits system performance. Using a WS approach, we minimize the impact
of 10-ns MZI latency and power consumption of weight DACs.

In the photo-core, the dynamic range of values is limited due to the output ADCs. During MVM
operations, the product of 8-bit inputs and weights results in more than 16 bits of information.
ADCs reduce the precision of the MVM outputs back to 8-bit. Although we discussed how to
preserve 8-bit accuracy at the output vectors in Section 3.1.5, the information loss in the partial
outputs causes accuracy degradation in DNNs. However, extra training efforts can ameliorate the
accuracy and keep it in the desired range. We confirmed that 8-bit precision is sufficient to maintain
the accuracy of the benchmarks we used (e.g., ResNet-50, BERT-large, and RNN-T) within 1% of the
FP32 accuracy after performing several epochs of quantization-aware retraining [55, 109]. QAT is
performed in FP32. We model the inference accuracy by tiling GEMM operations and quantizing
each input and output vector and weight tile for each MVM operation. While 8-bit precision is
adequate for inference, training in the photo-core requires higher precision, which would lead to
a higher power (roughly scales with 2B where B is the number of bits). More intelligent training
schemes may be needed to overcome this problem [37, 113].

Our study shows that SRAM dominates the area of both ADEPT and electronic SAs. It is bene-
ficial to have large local SRAMs to accommodate large batches of inputs. However, SRAM size is
limited in a chip-scale system. Therefore, scaling out to multiple chips is required to increase the
SRAM cache size. The problem of designing a scaled-out system with multiple chips with multiple
photo-cores, mapping a DNN model onto the many accelerators, and orchestrating the communi-
cation between them is part of our future work.

Our analyses show that different types of DNNs exhibit different photo-core utilization due to
the differing shapes of weight and input matrices. Vatsavai et al. [104] show that irregular matrix
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shapes, specifically in layers such as depthwise and pointwise convolution, might result in low
utilization in photonic tensor cores and propose a reconfigurable architecture. For our rectangular
MZI mesh architecture, such reconfigurability is not possible as multiplication and addition oper-
ations are not performed in separate blocks. However, in our architecture, it is possible to turn off
unused optical channels (similarly to that in optical networks [20]) to save power when utilization
is low. We leave the exploration of this runtime management as part of future work.

To run DNN inference using the MZI-based photo-core, first, we need to perform SVD and phase
decomposition on the original weight values of the DNN. For a given DNN, the weight values are
fixed for inference. Therefore, the cost of performing SVD and phase decomposition is a one-time-
only cost and will be amortized over all inferences. For completeness, we determined this one-
time cost as follows. We performed SVD and unitary matrix decomposition on a 128 × 128 matrix
with randomly chosen values between [−1,1]. We used the SVD function from the NumPy Linear
Algebra submodule to decompose the matrix. Then we implemented the phase decomposition
method for a square mesh as described in Clements et al. [29]. For 10 iterations of the experiment
that we ran on a 2 sixteen-core 2.8-GHz Intel Gold 6242 [4], the average energy consumption
is 1728.9 joules (DRAM energy included, calculated using PyRAPL [73]) and the average time
is 11.5 seconds. For ResNet50, the total number of 128 × 128 tiles is 1756. This would consume
approximately 2724.7 kJ of energy and take approximately 5 hours. This process can be further
accelerated using GPU implementations.

7 CONCLUSION

In this article, we proposed and evaluated an end-to-end hybrid system for accelerating DNN in-
ference containing a new electro-photonic accelerator called ADEPT. We showed that accelerating
DNN inference with photonics requires tight interplay between the photonic compute units for
GEMM operations and the electronic logic units for non-GEMM operations. The result is a bal-
anced electro-photonic system architecture that has a throughput that is similar to the throughput
of a system utilizing the widely accepted SA architecture while consuming significantly less power.
With the introduced optimization methods for pipelining operations and data transfers, we showed
that we can leverage the high throughput of the photonics GEMM accelerator without being bottle-
necked by electronic units. Overall, we are optimistic that photonic computing is nigh, and we are
looking forward to the application of the technology in real-life. Given its advantage over purely
electronic systems in terms of IPS/W or IPS/W·mm2, we are confident that the technology will
find its rightful place within the Cambrian explosion of artificial intelligence accelerators.
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