
FAB: An FPGA-based Accelerator for
Bootstrappable Fully Homomorphic Encryption

Rashmi Agrawal1 Leo de Castro2 Guowei Yang1 Chiraag Juvekar3 Rabia Yazicigil1

Anantha Chandrakasan2 Vinod Vaikuntanathan2 Ajay Joshi1
1Boston University, Boston, MA, USA; 2MIT, Cambridge, MA, USA; 3Analog Devices, Boston, MA, USA
{rashmi23, guoweiy, rty, joshi}@bu.edu, {ldec, anantha, vinodv}@mit.edu, chiraag.juvekar@analog.com

Abstract—Fully Homomorphic Encryption (FHE) offers pro-
tection to private data on third-party cloud servers by allowing
computations on the data in encrypted form. To support general-
purpose encrypted computations, all existing FHE schemes require
an expensive operation known as “bootstrapping”. Unfortunately,
the computation cost and the memory bandwidth required for
bootstrapping add significant overhead to FHE-based computa-
tions, limiting the practical use of FHE.

In this work, we propose FAB, an FPGA-based accelerator
for bootstrappable FHE. Prior FPGA-based FHE accelerators
have proposed hardware acceleration of basic FHE primitives
for impractical parameter sets without support for bootstrapping.
FAB, for the first time ever, accelerates bootstrapping (along with
basic FHE primitives) on an FPGA for a secure and practical
parameter set. The key contribution of this work is the architecture
of a balanced FAB design, which is not memory bound. In our
design, we leverage recent algorithms for bootstrapping while
being cognizant of the compute and memory constraints of our
FPGA. In addition, we use a minimal number of functional
units for computing, operate at a low frequency, leverage high
data rates to and from main memory, utilize the limited on-chip
memory effectively, and perform careful operation scheduling.

We evaluate FAB using a single Xilinx Alveo U280 FPGA
and by scaling it to a multi-FPGA system consisting of eight
such FPGAs. For bootstrapping a fully-packed ciphertext, while
operating at 300MHz, FAB outperforms existing state-of-the-art
CPU and GPU implementations by 213× and 1.5× respectively.
Our target FHE application is training a logistic regression model
over encrypted data. For logistic regression model training scaled
to 8 FPGAs on the cloud, FAB outperforms a CPU and GPU by
456× and 9.5× respectively, providing practical performance at
a fraction of the ASIC design cost.

I. INTRODUCTION

The last decade has seen rapid growth in data-centric
applications. Given the sheer amount of data that is used
by these applications, cloud services are commonly used to
accelerate these applications. However, cloud services also
introduce privacy concerns as it provides unrestricted data
access to third-party cloud servers.

Fully homomorphic encryption (FHE) [46, 21] is currently
regarded as the “gold standard” to preserve data privacy while
enabling data processing in an untrusted cloud environment.
FHE enables computing on encrypted data, allowing the cloud
to operate on the data without having access to the data itself.
Despite this incredible achievement of theoretical cryptography,
the large compute and memory requirements of FHE remain a
serious barrier to its widespread adoption. For example, to train
a logistic regression (LR) model for 30 iterations using plaintext
data (11,982 samples with 196 features), it takes ∼1.05sec on

a CPU. The same LR model training on encrypted data takes
∼124mins on the same CPU [28], a slowdown of about 7086×.
At the same time, the size of encrypted data (198MB) used in
this training is 152× larger than the size of the plaintext data
(1.3MB).

To address the compute and memory requirements of FHE,
several optimizations and acceleration efforts are in progress.
For FHE computing on CPUs, SEAL [51], PALISADE [52],
HELib [32, 25], NFLLib [2], Lattigo [39], and HEAAN [35]
software libraries accelerate various FHE schemes. Unfortu-
nately, CPUs do not have the capability to adequately exploit
the inherent parallelism available in FHE. GPU-based FHE
implementations [16, 3, 34, 44] have had more success. These
GPU-based implementations exploit the inherent parallelism
in FHE, but the GPUs have massive floating-point units that
are completely underutilized as FHE workloads consist almost
entirely of integer-only operations. Moreover, neither CPU nor
GPU can provide adequate main memory bandwidth to handle
the data-intensive nature of FHE workloads.

Consequently, Samardzic et al. proposed custom FHE ASICs
called F1 [49] and CraterLake [50], and Kim et al. proposed
BTS [38] and ARK [36]. These ASIC solutions are promising
as they outperform CPU/GPU implementations and narrow
the gap between the performance of computing on plaintext
vs. ciphertext. To achieve this performance improvement, they
leverage a large number of custom modular multipliers, large
register files, and large on-chip memory (as shown in Table I).
However, to enable such large on-chip memory, these ASIC
implementations need to use an expensive advanced technology
node like 7nm or 12nm. Moreover, the design and fabrication
of these ASIC proposals require several months of engineering
effort, incurring large non-recurring engineering costs. In
addition, the FHE algorithms are not standardized and are
under active development. So changes to the FHE algorithms
would require significant efforts to redesign an ASIC solution.

In this work, we adopt the middle path of using FPGAs as
they enable us to design custom hardware solutions that provide
practical performance and outperform CPU/GPU solutions. At
the same time, FPGA solutions are comparatively inexpensive
than ASIC solutions with a quick turnaround time for design
updates, and thus, highly resilient to future FHE algorithm
changes. We propose FAB, an FPGA-based accelerator for
bootstrappable FHE that supports the Cheon-Kim-Kim-Song
(CKKS) [14] FHE scheme. FAB makes use of state-of-the-art
analysis of the bootstrapping algorithm [17] to design the FHE

1

TABLE I
RECENT ASIC DESIGNS FOR FHE.

Work Parameters
(N, logq)

Modular
multiplier
count

On-chip
register
file (MB)

On-chip
memory
(MB)

F1 [49] 214, 32 18432 8 64
BTS [38] 217, 50 8192 22 512
CraterLake [50] 216, 28 14336 256 -
ARK [36] 216, 54 20480 76 512

operations and select parameters that are optimized for the
hardware constraints. This allows FAB to support practical
FHE parameter sets (i.e. parameters large enough to support
bootstrapping) without being bottlenecked by the main-memory
bandwidth. We evaluate FAB on a target application of training
a logistic regression model over encrypted data. Our evaluation
demonstrates that FAB outperforms all CPU/GPU implementa-
tions (9.5× to 456×) and provides practical execution latency.

We architect FAB for the Xilinx Alveo U280 FPGA acceler-
ator card containing a High Bandwidth Memory (HBM2). FAB
is highly resource efficient, requiring only 256 functional units,
where each functional unit supports various modular arithmetic
operations. FAB exploits maximal pipelining and parallelism
by utilizing these functional units as per the computational
demands of the FHE operations. FAB also makes efficient use
of the limited 43MB on-chip memory and a 2MB register file
to manage the >100MB working dataset at any given point in
time. Moreover, FAB leverages a smart operation scheduling to
enable high data reuse and prefetching of the required datasets
from main memory without stalling the functional units. In
addition, this smart scheduling evenly distributes the accesses
to main memory to efficiently utilize the limited main memory
bandwidth through homogeneous memory traffic. In summary,
our contributions are:

• We propose FAB, a novel accelerator that supports all ho-
momorphic operations, including fully-packed bootstrapping,
in the CKKS FHE scheme for practical FHE parameters.

• FAB tackles the memory-bounded nature of bootstrappable
FHE through judicious datapath modification, smart operation
scheduling, and on-chip memory management techniques to
maximize the overall FHE-based compute throughput.

• FAB outperforms all prior CPU/GPU works by 9.5× to
456× and provides a practical performance for our target
application: secure training of logistic regression models.

The performance, cost, and flexibility of FAB suggest that
FPGA provides a “sweet spot” for FHE acceleration. FAB
significantly outperforms both CPU and GPU implementations
of FHE. In contrast to ASICs, FAB only uses standard, com-
mercially available hardware (FPGA) that is highly accessible
to the general public (e.g. via the AWS F1 cloud) and can
be deployed immediately for under a dollar per hour [5, 40].
By enabling competitive levels of performance with the same
availability as a high-end GPU, FAB demonstrates that FPGAs
are the most viable option for near-term hardware acceleration
of FHE.

II. BACKGROUND

In this section, we briefly review the CKKS [14] homomor-
phic encryption scheme and the relevant parameters for FAB.
A summary of these parameters is given in Table II.

A. The CKKS FHE Scheme
The CKKS [14] scheme supports operations over vectors

of complex numbers. A plaintext in the CKKS scheme is an
element of Cn, where C is the field of complex numbers.
The plaintext operations are component-wise addition and
component-wise multiplication of elements of Cn. In addition
to the plaintext size n, CKKS is parameterized by a ciphertext
coefficient modulus Q∈Z (where Z is the ring of integers) and
a ciphertext polynomial modulus xN +1, where N is chosen
to be a power of 2. CKKS ciphertexts are elements of R2

Q,
where RQ := ZQ[x]/(xN +1). We denote the encryption of a
vector m ∈ Cn by JmK = (am,bm) where am and bm are the
two elements of RQ that comprise the ciphertext.

CKKS supports the following operations over encrypted
vectors. All arithmetic operations between two plaintext vectors
are component-wise.
• Add(Jm1K ,Jm2K) → Jm1 +m2K, where the addition is

component-wise over C.
• Mult(Jm1K ,Jm2K)→ Jm1⊙m2K, where ⊙ represents the

component-wise product of two vectors.
• Rotate(JmK ,k)→ Jφk(m)K, where φk is the function that

rotates a vector by k entries. As an example, when k = 1,
the rotation φ1(x) is defined as follows:

x =
(
x0 x1 . . . xn−2 xn−1

)
φ1(x) =

(
xn−1 x0 . . . xn−3 xn−2

)
• Conjugate(JmK)→ JmK where · represents the complex

conjugate operation.
1) Homomorphic Levels & RNS Representation: To effi-

ciently operate over elements of RQ, we represent Q as a
product of primes q1, . . . ,qℓ where each qi is roughly the size
of a machine word. This follows the standard residue number
system (RNS) representation of ciphertext moduli [26, 13]. We
call each qi a limb of the modulus Q, and we say a modulus

TABLE II
CKKS FHE PARAMETERS AND THEIR DESCRIPTION.

Parameter Description

N Number of coefficients in the ciphertext polynomial.
n Number of plaintext elements in a ciphertext (n≤ N/2 is

required).
Q Full modulus of a ciphertext coefficient.
q Prime modulus and a limb of Q.
L Maximum number of limbs in a ciphertext.
ℓ Current number of limbs in a ciphertext.
dnum Number of digits in the switching key.
α ⌈(L+1)/dnum⌉. Number of limbs that comprise a single

digit in the key-switching decomposition. This value is
fixed throughout the computation.

P Product of the extension limbs added for the raised modulus.
There are α +1 extension limbs.

fftIter Multiplicative depth of a linear transform in bootstrapping.

2

Q := ∏
ℓ
i=1 qi has ℓ−1 levels. We call the set B := {q1, . . . ,qℓ}

an RNS basis. Each multiplication operation reduces the size
of the modulus by one limb. A modulus with ℓ levels can
support a circuit of multiplicative depth ℓ before bootstrapping
is required. Addition, rotation, and conjugation operations do
not change the number of levels in a modulus.

This representation allows us to operate over values in
ZQ without any native support for multi-precision arithmetic.
Instead, we can represent x ∈ ZQ as a length-ℓ vector of
scalars [x]B = (x1,x2, . . . ,xℓ), where xi ≡ x (mod qi). We refer
to each xi as a limb of x. To add two values x,y ∈ ZQ, we
have xi + yi ≡ x+ y (mod qi). Similarly, we have xi · yi ≡ x · y
(mod qi). This allows us to compute addition and multiplication
over ZQ while only operating over standard machine words.

In memory, ciphertext data can be viewed as an ℓ×n matrix,
where each row is a limb and each column corresponds to a
single coefficient modulo Q. Arranging this matrix in “row-
major order” where there is locality for elements in the same
row is called limb-wise access as it enables efficient data
access within a single limb. By contrast, arranging this matrix
in “column-major order” where there is locality for elements
in the same column is known as slot-wise access as it is best
for accessing the same slot of data across all ciphertext limbs.

2) Number Theoretic Transform: To efficiently multiply
elements of RQ, we make use of the number theoretic transform
(NTT), which is the analog of FFT modulo q. All polynomials
in the CKKS scheme are represented by default as a series of
N evaluations at fixed roots of unity, allowing fast polynomial
multiplications (in O(N) time instead of O(N2)). NTT is the
finite field version of the fast Fourier transform (FFT) and
takes O(N logN) time and O(N) space for a degree-(N− 1)
polynomial. We call the output of the NTT on a polynomial
its evaluation representation. If any operations are to be done
over the polynomial’s coefficient representation, then we need
to perform an inverse NTT (iNTT) to move the polynomial
back to its coefficient representation.

We would like to note that in addition to NTT polynomial
transform, the CKKS scheme also uses the FFT polynomial
transform. On the client side, during CKKS encryption and
decryption, a complex FFT must be run on vectors of complex
numbers to map them to polynomials that can be encrypted.
Correspondingly, on the cloud side during bootstrapping, this
complex FFT (that was performed on the client side) must be
homomorphically evaluated on the encrypted data.

3) Bootstrapping: In order to compute indefinitely on a
CKKS ciphertext, there exists an operation known as boot-
strapping [12] that raises the ciphertext modulus Q while
maintaining the correct structure of the ciphertext. This
operation is the main bottleneck for CKKS FHE. Efficient
implementation of bootstrapping is the main focus of FAB.

We refer the reader to [17] for a detailed description of
the bootstrapping algorithm that we use. At a high level, the
bootstrapping operation consists of three major steps: a linear
transform, a polynomial evaluation, and finally another linear
transform (inverse of the first step). All these steps consist
of the same homomorphic operations: Add, Mult, Rotate,

and Conjugate. The polynomial evaluation is constrained by
application parameters, and we use the same polynomial as
Bossuat et al. [7] to support non-sparse CKKS secret keys. The
multiplicative depth of this polynomial evaluation is 9. The two
linear transforms in bootstrapping are FFT and inverse FFT,
which must be homomorphically evaluated on the encrypted
data. There is a depth-performance trade-off in this algorithm
that has been carefully studied in prior works [11, 27, 17].
This trade-off is parametrized by the chosen multiplicative
depth of the FFT algorithm, which we denote as fftIter. We
provide a detailed discussion of the effects of this parameter
in Section II-B.

4) Bootstrapping Performance Metric: After a bootstrapping
operation, the resulting ciphertext can support ℓ computation
levels before needing to be bootstrapped again. As each level
corresponds to a multiplication, the performance metric [34]
for bootstrapping is as follows:

TMult,a/slot :=
TBoot+∑

ℓ
i=1 TMult(i)
ℓ ·n

(1)

This is known as the amortized multiplication time per slot.
Here, n is the number of slots in the ciphertext, TBoot is the
bootstrapping time, and TMult(i) is the time to multiply at level
i. The number of levels ℓ in the resulting ciphertext are equal
to the maximum supported levels in the starting bootstrapping
modulus minus the depth of bootstrapping. The depth of our
bootstrapping algorithm is LBoot := 2 ·fftIter+9.

5) Switching Keys & Major Subroutines: The Mult, Rotate,
and Conjugate operations all produce intermediate ciphertexts
that are decryptable under a different secret key than the input
ciphertext. These operations all use a common subroutine
known as KeySwitch [10] to switch the secret key back to the
original value. KeySwitch is a major bottleneck in low-level
homomorphic operations.

All instances of KeySwitch require a switching key, which is
a special type of public key generated using the secret key. The
KeySwitch operation takes in a switching key ksks→s′ and a
ciphertext JmKs decryptable under a secret key s and produces
a ciphertext JmKs′ that encrypts the same message but can be
decrypted under a different key s′. We use the structure of
the switching key proposed by Han and Ki [29], where the
switching key is parameterized by a length dnum and is a
2×dnum matrix of polynomials.

ksk=

(
a1 a2 . . . adnum

b1 b2 . . . bdnum

)
(2)

We omit the descriptions of individual CKKS subroutines
and refer the reader to [17] for a thorough description
of these subroutines. For reference, we make use of the
Decomp, ModUp, ModDown, KeySwitchInnerProd (which we
call KSKIP), and Automorph subroutines. During the course of
key switching, the ciphertext coefficient modulus is raised from
Q to P ·Q, where P is a fixed product of “extension limbs”.
The ciphertext modulus Q is split into at most dnum digits of
equal size, and P must be larger than the largest product of
the limbs in a single digit of Q. We refer the reader to [29] for

3

TABLE III
PARAMETER SET FOR FPGA IMPLEMENTATION.

logq N L dnum fftIter λ

54 216 23 3 4 128

more details and note that the parameter P ·Q is the maximum
modulus for which security must be maintained.

B. Practical Parameter Set for FAB

To prototype an efficient FAB design on the Xilinx Alveo
U280 FPGA, we identify an optimal FHE parameter set that
can support CKKS bootstrapping as well as the computational
requirement of a realistic machine learning application. The
parameter N must be a power of two for the efficiency of the
NTT, and the largest power of two that still leaves the limbs
small enough to fit in the on-chip memory is N = 216. Given
this N, the maximum ciphertext modulus we can support is
log(PQ) = 1674, which achieves a 128-bit security level [4, 7].
These parameters also meet our FPGA’s constraints. The
maximum size of a single ciphertext is only 27.4MB (based
on the maximum number of raised limbs, which is 31 limbs).
We can fit an entire ciphertext in the limited on-chip memory
(43MB) of our FPGA and thus limit the data movement to/from
the main memory. Table III lists our choice of the other
parameters based on the selected values for log(PQ) and N.

Limb Bit-Width. We fix the bit-width for each limb (logq)
as 54 bits for several reasons. First, a 54-bit limb width enables
effective utilization of both the 18-bit multipliers and the 27-
bit preadders within the DSP slices of the FPGA through
multi-word arithmetic [31]. DSP slices have multipliers that
are 18×27-bit wide. Using multi-word arithmetic, we can split
54-bit operands into multiple 18-bit operands and operate over
them in parallel. To perform integer additions, we split the
54-bit operands into two 27-bit operands to leverage the 27-bit
preadders in the DSP blocks. Second, a 54-bit limb width allows
us to make the most of the scarce on-chip memory resources,
which includes both UltraRAM (URAM) and Block-RAM
(BRAM). On U280 cards, a URAM block can store 72-bit wide
data and a BRAM block can store 18-bit wide data. Therefore,
with 54-bit (a multiple of 18) coefficients in the vectors, we
can effectively utilize the entire data width of the on-chip
memory resources by combining multiple B/URAM blocks to
store single/multiple coefficients at a given address. We discuss
a detailed on-chip memory layout later in Section IV.

Higher-level Parameters. The dnum and fftIter parameters
directly impact a number of factors that determine the final
amortized multiplication time per slot, including the bootstrap-
ping runtime as well as the number of compute levels available
after bootstrapping. Figure 1 shows that as we increase the
dnum value, we add more compute levels after bootstrapping,
but at the same time, we increase the size of KeySwitch
keys, further increasing the compute and on-chip memory
requirements. At dnum= 3, we are able to make the best use
of on-chip memory for the corresponding KeySwitch key size.

Fig. 1. Impact of changing the dnum parameter on the compute levels after
bootstrapping and the switching key size. Note that we use the key-compression
technique from [17] to halve the size of the keys.

Fig. 2. Execution time of bootstrapping vs fftIter. For all benchmarks we
set N = 216, log(PQ) = 1674, log(q) = 54, and dnum= 3.

As mentioned earlier in Section II-A, bootstrapping performs
an FFT and an inverse FFT as the first and last steps
of the algorithm. There is a depth-performance trade-off
between the chosen multiplicative depth of the FFT algorithm
and the amount of compute required for the bootstrapping
operation. This trade-off is parameterized by fftIter, which is
the multiplicative depth of the FFT algorithm. As the value
of fftIter increases, the multiplicative depth also increases
implying fewer compute levels after bootstrapping. However,
as we increase fftIter, the radix of the FFT sub-matrices
reduces, thus requiring a fewer number of rotations during
each multiplication. Figure 2 shows how increasing the fftIter
parameter impacts the overall bootstrapping execution time and
the number of NTT operations to be computed. The metric
used to measure bootstrapping time is the amortized per slot
multiplication time in Equation 1. We pick fftIter = 4 as it
generates an optimal balance between the computations (both
rotations and NTTs) and the number of compute levels after
bootstrapping. This fixes the total depth of our bootstrapping
circuit as LBoot = 2 ·fftIter+9 = 17.

III. OVERALL SYSTEM ARCHITECTURE

In this section, we present the overall system architecture
(system in the cloud) that uses our proposed FAB hardware
accelerator. As shown in Figure 3, our overall system consists

4

Cloud Server

FAB

Mod Mult Mod Add Automorph

NTT
Address

Generation

URAM
Address

Generation

BRAM
Address

Generation
Control Logic

R
F

URAM
Bank c0

URAM
Bank c0

Host CPU (X86)
(Host Code)

CMAC
Subsystem

Global
Memory

Rx
Adapter

Tx
Adapter

CMAC HBM2
(Stack 0)

HBM2
(Stack 1)URAM

Bank c0
URAM
Bank c1

BRAM
Bank c0

BRAM
Bank c1

URAM
Misc.
Bank

BRAM
Misc.
Bank

AXI4-lite
PCIe

100G
Ethernet
Switch

Other FPGAs

Tx
FIFO

Rx
FIFO

Wr
FIFO

Rd
FIFO

Mod Sub

256

FPGA

Fig. 3. An FPGA-based system for FHE-based computing. We map our FAB accelerator to the FPGA programmable logic. The host CPU interacts with
FPGA via PCIe. CMAC subsystem enables interaction between multiple FPGAs via Ethernet Switch.

of four key components: a host CPU (X86 in our case) that
offloads the FAB RTL design and data to the FPGA, FAB RTL
design that is packaged as a kernel code, global memory on
the FPGA comprising of two HBM2 stacks (4GB each), and a
100G Ethernet (CMAC) subsystem to enable transmit/receive
data between FPGAs without involving the host. The host CPU
is attached to the FPGA accelerator board (Alveo U280) via
PCIe. This PCIe interface enables the data transfer between
the host and the global memory on the FPGA board. To enable
this data transfer, the host allocates a buffer of the dataset
size in the global memory. The host code communicates the
base address of the buffer to the kernel code using atomic
register reads and writes through an AXI4-Lite interface. The
host code also communicates all kernel arguments consisting
of the system parameters like prime moduli, the degree of the
polynomial modulus N, and the pre-computed scalar values (to
be stored in the register file) through this interface. A kernel
is started by the host code (written in native C++) using the
Xilinx runtime (XRT) API call. It is worth noting that this
XRT API call can be seamlessly replaced by an OpenCL [42]
API call with trivial modifications to the host code. Once the
kernel execution starts, no data transfer occurs between the
host and the global memory so as to interface all 32 AXI ports
from the HBM to the kernel code. The results are transferred
back to the host code once the kernel execution completes.

The kernel code instantiates 256 functional units consisting
of modular arithmetic and automorph units. A small register file
(RF), 2MB in size, stores all the required system parameters
and the precomputed scalar values that are received from the
host. The RF also facilitates temporary storage of up to four
polynomials that may be generated as intermediate results.
The kernel has 32 memory-mapped 256-bit interfaces that
are implemented using AXI4 master interfaces to enable bi-
directional data transfers to/from the global memory. The read
(Rd) FIFO and write (Wr) FIFO stream the data from global

memory onto the on-chip memory and vice-versa. The URAM
and BRAM resources on the FPGA are organized into various
banks to be used as on-chip memory within the kernel code.
All of the URAM memory banks are single-port banks as
URAMs do not support dual ports, while the BRAM memory
banks are dual-port banks. The transmit (Tx) and receive (Rx)
FIFO stream the data to and from the CMAC subsystem.

The Alveo U280 FPGA has an integrated IP block for 100G
Ethernet (CMAC) core, providing a 100Gb/s Ethernet port to
transfer data between FPGAs that are connected to different
hosts. The CMAC core has an internal clock operating at
322MHz and the data interface with the kernel code can be
either 256/512-bit wide. We implement a 512-bit interface
in our kernel code to keep up with 100Gbps transfer rates.
This is because, with a 512-bit interface at 300MHz, we can
theoretically process data at ∼153Gbps, which is faster than
the Ethernet IP. In contrast, with a 256-bit interface, we can
process data at ∼76Gbps, which is comparatively slower than
the Ethernet IP and will end up dictating the final time it takes
to transmit/receive the data to/from other FPGAs. With our
512-bit interface, it takes ∼11,399 clock cycles to transmit a
single limb of the ciphertext (polynomial of size 0.4MB) and
∼546,980 clock cycles to transmit the entire ciphertext.

IV. FAB MICROARCHITECTURE

FAB consists of a functional unit, on-chip memory (URAM
and BRAM), RF, FIFO, address generation units, and control
logic. In this section, we discuss the microarchitecture of each
of these units. These units are architected so as to achieve a
balanced full-system design.

A. Functional Unit

All operations in FHE break down to integer modular
arithmetic i.e., modular addition and modular multiplication
operations. Therefore, each of the 256 functional units in
FAB consists of modular multiplication, modular addition,

5

Algorithm 1 Modular Reduction in Fq

1: Modulus q, integer a, shi f ts = 6 ▷ a is (2logq−1) bits
2: Precompute: madd[i−1] = ∑

5
j=0 i[j] ·2logq+ j (mod q) for

i = 1 to 2shi f ts−1 ▷ madd has logq-bit elements
3: Set (A[1],A[0]) ← a, count = 0, as1 = 0
4: while count < logq do
5: (carry,as1) = A[1]≪ shi f ts ▷ carry is shi f ts bit
6: A[1] = as1 +madd[carry−1]
7: count = count + shi f ts
8: end while
9: c = A[1]+A[0]

10: if c > q then
11: c = c−q
12: end if
13: return c

modular subtraction, and an automorph unit. As mentioned in
Section II-B, we utilize a multi-word arithmetic approach to
reduce 54-bit operations to 27-bit operations for addition and
18-bit operations for multiplication. This facilitates efficient
utilization of specialized DSP arithmetic blocks on the FPGA.

For multi-word modular addition and subtraction, we follow
Algorithms 2.7 and 2.8 respectively, proposed by Hankerson
et al. [31]. Both of these algorithms require a correction step
(on line 2 in Algorithms 2.7 and 2.8) for modular reduction,
which leads to 54-bit addition/subtraction operations again.
Subsequently, we modify the correction step in both the
algorithms to perform multiple 27-bit operations instead. With
multi-word arithmetic and all the pipeline registers in place
for the DSP blocks, both algorithms perform modular addition
and subtraction in 7 clock cycles.

The modular multiplication is accomplished by first multiply-
ing the operands as integers, followed by a modular reduction
in a pipelined fashion. For the integer multiplication, we follow
the operand scanning algorithm (Algorithm 2.9 [31]) that adopts
the schoolbook approach to perform multi-word multiplication.
As we split our input 54-bit operands into three 18-bit operands,
a naı̈ve implementation of this algorithm will require 21 clock
cycles to perform a single multiplication. Given the fact that
most FHE workloads have 50% of the operations as integer
multiplication, a latency of 21 clock cycles for a single integer
multiplication is too high. Consequently, we perform loop
unrolling on this algorithm and compute various multiplication
operations in parallel, reducing the multiplication latency to
12 clock cycles while still adding all the required pipeline
registers for DSP multipliers.

For modular reduction, we propose a hardware-friendly fast
modular reduction algorithm by modifying Will and Ko’s
reduction technique [54]. As opposed to standard modular
reduction approaches like Barrett reduction [6], which requires
performing multiple expensive multiplication operations, Will
and Ko’s technique requires only shift and addition operations.
It works by shifting a single bit of the input number, making
it a good choice for inputs with smaller bit widths. For our
(2logq−1)-bit wide number, Will and Ko’s technique takes

2logq cycles (for logq = 54 it takes 108 cycles) to compute
a modular reduction. To reduce this latency while leveraging
the simplicity of their approach, we propose Algorithm 1 that
can instead perform multiple bit shifts, requiring only 12 clock
cycles for logq = 54 for the modular reduction operation.

We set the number of shifts to 6 (line 1 in Algorithm 1) in
our implementation, but it is worth noting that this algorithm
is generic and can work with any number of bit shifts
depending on the latency requirement and space constraints.
This algorithm requires precomputing an array madd (line 2
in Algorithm 1) having 63 elements, where each element is
(logq)/2-bit wide. In our case, we need to perform modular
reduction w.r.t 31 different primes, implying that we will need
to precompute 31 such madd arrays requiring < 7KB of storage
space in total. However, this precompute is done offline, so
there is no compute overhead associated with it. All other steps
in the proposed algorithm can be performed using inexpensive
shift and addition operations.

The final operation that forms part of the functional unit
is Automorph, which performs permutation for the Rotate
operation. The function of the automorph unit is to read a
polynomial from the on-chip memory and store it in the register
file in the permuted order as per the given rotation index k.
Any original slot indexed by i in ciphertext maps to the rotated
slot through the given automorphism equation:

new indexk(i) = ((5k−1)/2)+5 · i (mod N) (3)

Due to the limited number of rotation indices (about 60 different
values) being used in bootstrapping, we precompute and store
the various powers of 5 corresponding to each of the rotation
index k. The division by two is a simple bit-shift, and the
reduction modulo N is significantly simplified because N is
always a power of two. Thus, reduction modulo N can be
achieved by simply performing the AND operation with N−1.

To summarize, the functional units in FAB are optimized
for the available hardware to reduce resource overhead.
They make effective use of high-performance multipliers
and adders in DSP blocks to perform low-latency modular
arithmetic. FAB efficiently utilizes these functional units
through fine-grained pipelining and by issuing multiple
scalar operations in a single cycle.

B. On-chip Memory

The Alveo U280 accelerator board has single-cycle access
URAM and BRAM blocks. There are 962 blocks of URAM
where each block is 288Kb and can be used as single-port
memory. There are 4032 blocks of BRAM where each block
is 18Kb and can be used as both single and dual-port memory.
FAB uses a combination of single and dual-port memory banks
constructed using URAM and BRAM blocks, providing a total
capacity of 43MB and a 30TB/s internal SRAM bandwidth.

As shown in Figure 4-(a), each URAM block has a data
width of 72 bits and a depth of 4096. We combine three such
URAM blocks to achieve a data width of 216 bits. This allows
us to store four 54-bit coefficients (216/4 = 54) at any given
address. Consequently, we need to layout 64 of these 216-bit

6

(b)

(a)

4096

72-bits 72 72 72

216-bits, 3 URAMs

URAM

64
URAMs

3 URAMs

Misc. Bank
(16 limbs, 192

URAMs)

c0 Bank
(32 limbs, 384 URAMs)

c1 Bank
(32 limbs, 384 URAMs)

16
Limbs

192 URAMs = 1 Bank

1024

18-bits 18 18 18

54-bits, 3 BRAMs

BRAM

256
BRAMs

3 BRAMs

Misc. Bank
(4 limbs,

768 BRAMs)
Depth of 1024

c1 Bank
(8 limbs, 1536 BRAMs)

c0 Bank
(8 limbs, 1536 BRAMs)

8
Limbs

1536 BRAMs = 1 Bank

2
BRAMs

54545454

Fig. 4. On-chip memory configuration; (a) URAMs are organized as single-port memory banks and (b) BRAMs are organized as dual-port memory banks.

wide URAMs into a single memory bank to enable storage of
256 coefficients. Thus, with every read and write, we can access
256 coefficients in the same cycle, aligning with the number
of functional units in the design. With this layout, a single
memory bank consists of 64×3 = 192 URAMs and can store
16 polynomials (∼7.08MB). We organize the available URAM
blocks into five such banks that are divided as follows: The
first two banks (c0 bank-1 and 2) store 31 limbs (23 original
and 8 extension) of the c0 ring element of the ciphertext. The
next two banks (c1 bank-1 and 2) store 31 limbs (23 original
and 8 extension) of the c1 ring element of the ciphertext. The
fifth bank can store 16 polynomials. We call the fifth bank the
“miscellaneous” bank as it is used to store multiple data items
such as twiddle factors, KeySwitch keys, and plaintext vectors
that are read in from the main memory.

As shown in Figure 4-(b), BRAM blocks are organized
as 54-bit wide memory banks by combining three 18-bit
wide BRAMs. As each address can store only a single 54-bit
coefficient, we need 256 BRAM blocks to store 256 coefficients.
In addition, the depth of each BRAM block is only 1024;
therefore, we stack two BRAM blocks to get a depth of 2048,
thus enabling storage of 8 polynomials in a single BRAM
bank. Similar to the URAM bank organization, we organize
BRAM blocks into multiple banks. We have three BRAM
banks in total, where two banks consist of 1536 BRAMs each
and can store 8 polynomials and thus, are ideal to store the
extension limbs. While the third bank consists of 768 BRAMs
and can store 4 polynomials. We again call this third bank the
“miscellaneous” bank and use it to store temporary data from
the main memory during various operations.

To summarize, FAB efficiently utilizes the available
U/BRAM blocks on the FPGA as on-chip memory. Mapping
the data width of the polynomials to that of U/BRAM
blocks enables storage of up to 43MB of data on-chip. FAB
overcomes the limited main memory bandwidth by utilizing

a combination of single and dual-port memory banks that
complement the operational needs of the underlying FHE
operations, resulting in a more balanced FPGA design.

C. Register File
Our design consists of multiple register files (RFs). The total

capacity of all the RFs is 2MB. The RFs are spread across
the design and are used by functional, address generation,
and control units. Each RF has multiple read/write ports with
single-cycle access latency. About one-fourth of the RF is used
to store pre-computed values and system parameters, which
are written by the host CPU through atomic writes before
launching the kernel code execution. The remaining RFs are
used to store up to four intermediate polynomials that are
generated as part of Rotate or Mult operations.

D. FIFOs
We instantiate 32 synchronous Wr and Rd FIFOs (supporting

32 AXI ports on the HBM side) to stream the data between
the main memory and the on-chip memory. These FIFOs are
composed of the distributed RAM available on the FPGA
board. The data width of each FIFO is equal to the data width
supported by each AXI port i.e., 256 bits. The depth of the
Wr FIFO depth is 128 to support an HBM burst length of
128. The depth of the Rd FIFO is 512 to support up to four
outstanding reads. Rd FIFO is driven by the memory-side
clock domain having a clock frequency of 450MHz, while the
Wr FIFO is driven by the kernel-side clock domain having a
clock frequency of 300MHz. We also instantiate a Transmit
(Tx) and Receive (Rx) FIFO to stream the data between the
CMAC subsystem and the on-chip memory. These are also
synchronous FIFOs having a 512-bit data interface.

V. DATAPATH OPTIMIZATIONS

In this section we present out datapath optimizations for the
most compute-intensive NTT and the most memory-intensive

7

KeySwitch operations of the CKKS scheme, while efficiently
utilizing FAB microarchitecture.

A. NTT/iNTT datapath

Our NTT datapath uses a unified Cooley-Tukey algorithm
[43] for both NTT and inverse-NTT (iNTT). Using a unified
NTT algorithm provides the convenience of leveraging the
same data mapping logic for both NTT and iNTT. The 256
modular addition, subtraction and multiplication units operate in
parallel as radix-2 butterfly units, processing 512 coefficients of
a polynomial at once. This allows us to perform logN stages in
approximately logN · N

512 cycles instead of logN · N
2 cycles. The

NTT address generation unit (shown in Figure 3) takes care of
uniquely mapping the data within each stage of the NTT/iNTT
using a sub-unit, i.e. a data mapping unit. Furthermore, a
twiddle factor mapping sub-unit within the NTT address
generation unit takes care of reading the required twiddle
factors for an NTT stage from the URAM miscellaneous bank.
Both of these sub-units leverage the data and stage counters
to generate the addresses on-the-fly using inexpensive shift,
and AND operations. Thus, we efficiently leverage pipelining
and parallelism while computing NTT/iNTT by distributing the
computations over the functional units, a data mapping unit, and
a twiddle factor mapping unit. It is worth noting that we do not
take into account the latency of the bit-reversal operation here as
bit-reversal is carried out along with automorph/multiplication
operation that is performed just before NTT/iNTT.

B. KeySwitch datapath

A KeySwitch operation comprises of four sub-operations,
i.e., Decomp, ModUp, KSKIP, and ModDown. With limited
on-chip memory, these operations require smart operation
scheduling to efficiently utilize the on-chip memory. This is
because KeySwitch not only needs to operate on the extension
limbs (the factors of P) but it also needs to perform inner
product with the KeySwitch keys that are almost 3× the size
of our ciphertext. Below we present a description of how we
schedule and reorganize the sub-operations in KeySwitch to
manage ∼112MB of data (84MB keys and 28MB ciphertext)
within the available 43MB on-chip memory without writing
any resultant limbs back to the main memory.

The Decomp sub-operation splits the limbs in am ring
element (ciphertext has two ring elements am and bm) into
dnum digits. Each of these digits is then passed to the ModUp
sub-operation. ModUp outputs L + 1 + α limbs; after all
ModUp operations are complete we have dnum · (L+1+α)
limbs in total. In our case, dnum= 3, L = 23 and α = 8. This
results in 3 ·31 = 93 total limbs as the output of the ModUp
sub-operation. The KSKIP step is an inner product between
the input polynomial and the switching key in the raised basis.
KSKIP takes as input these 93 limbs and performs an inner-
product with the corresponding 93 limbs of KeySwitch keys,
resulting in a ciphertext with L+α = 31 limbs. ModDown
follows almost a similar sequence of operations as ModUp and
reduces the ciphertext limbs back to L = 23.

To manage all 93 limbs in on-chip memory (without having
to write any resultant limb back to main memory), we modify
the KeySwitch datapath to reorganize the execution of sub-
operations in KeySwitch. Naı̈vely, one would execute the sub-
operations one after another following the original datapath
shown in Figure 5 (a). However, there are challenges associated
with this approach.

In the original KeySwitch data path, we perform the full
ModUp step to extend the RNS basis of the input polynomial,
then the full KSKIP. There is not enough space in the
on-chip memory to hold all the extended limbs, and so the
original datapath first reads in the input limbs in evaluation
representation to perform the Decomp step, then writes the
limbs to main memory in coefficient representation after
the ModUp step. These limbs are then read back into the
on-chip memory to perform the KSKIP step. However, KSKIP
needs to perform inner product in evaluation representation,
requiring an expensive NTT operation. Moreover, KSKIP
needs to read all 93 limbs of the KeySwitch keys at once,
with a single limb read latency of 300 cycles from the main
memory. As there is not enough spare on-chip memory to read
multiple key limbs in advance and an inner product takes only
275 cycles to finish, we can end up introducing bubbles in
the compute pipeline while performing KSKIP sub-operation.
FAB addresses the above-mentioned challenges by modifying
the datapath (refer Figure 5 (b)) and using smart operation
scheduling.

Modified datapath: We modify the original KeySwitch data-
path so as to split the KSKIP step into two steps (step 2 and
step 4 in Figure 5) (b). Rather than performing the KSKIP step
all at once, we “greedily” make progress on the inner product
by performing the multiplications and additions as soon as the
operands are in memory, which reduces DRAM transfers.

We begin with L limbs in am that are in evaluation
representation. The Decomp step (step 1 in Figure 5 (b)) takes
these L limbs and splits them into β ≤ dnum blocks of α limbs
each. These α limbs then take two paths. First, these α limbs
are used to begin the KSKIP (step 2 in Figure 5 (b)), and the
intermediate sum is written out to URAM. We can perform
this KSKIP operation as the α limbs are still in evaluation
representation. In the second path, these α limbs are input to
the iNTT step (step 3.1 onwards in Figure 5 (b)) so that the
extension limbs can be generated. Once these extension limbs
are generated, they are used to complete the KSKIP step (step
4 in Figure 5 (b)). Therefore, with this datapath modification,
we need not write the limbs to off-chip memory in coefficient
representation after the ModUp step and then read them back
again into the on-chip memory and convert the limbs into
evaluation representation to perform the KSKIP. Thus, the
modified datapath not only reduces the number of NTT
computations (the most expensive subroutine in KeySwitch
operation) but also helps alleviate the memory bandwidth
bottleneck by reducing memory traffic.

We note that splitting KSKIP into two steps does not change
the KeySwitch algorithm, only the order in which the steps are

8

(b) Modified datapath

ModUp
dnum times

HBM

3

Decomp

R
F

R
F
R
F

R
F
R
F

R
F

1

URAM
c0 Bank

URAM
c0 Bank

URAM
Misc.
Bank

iNTT
Basis

Convert
BRAM

c0 Bank NTT

HBM

URAM
Misc.
Bank

KSKIP

BRAM
Misc.
Bank

HBM

4 URAM
c1 Bank

URAM
c0 Bank

KSKIP

BRAM
Misc.
Bank

HBM

2

URAM
c1 Bank

R
F

R
F

R
F

(a) KeySwitch original datapath
Decomp ModUp KSKIP ModDown

31 2 4

3.1 3.2
ModDown

5

Fig. 5. (a) Original datapath. (b) Modified datapath for efficient on-chip memory utilization for sub-operations (Decomp, ModUp, KSKIP, and ModDown)
within the KeySwitch Operation. Our approach avoids reads/writes of the ciphertext limbs to the main memory, which lowers the latency of FHE computing.

performed changes. The resulting noise from the KeySwitch
algorithm is identical with or without this reordering.
Smart operation scheduling: Smart operation scheduling
complements the modified datapath by generating an entire
block of extension limbs at once for the given original α

limbs. Altogether we have dnum blocks of α limbs for which
extension limbs must be generated during ModUp. If we
generate all extension limbs at once for all dnum blocks of α

limbs, we will not have enough space in on-chip memory to
store all the extension limbs. So, instead, as soon as all the
extension limbs for one block of α limbs are computed, we
perform an NTT followed by KSKIP on these limbs before
generating the next block of extension limbs. This process is
repeated dnum times to generate all dnum · (L+1+α) limbs.

Our smart operation scheduling has several advantages. First,
from Figure 4, we know that BRAM c0 bank can store only
α = 8 limbs. Therefore, by repeating ModUp+KSKIP step
dnum times for α limbs at once, we can manage the generation
of all extension limbs using limited capacity (α-limb) BRAM
c0 bank. Moreover, as the BRAM c0 bank is dual-ported and all
extension limbs are always stored in this bank, it supplements
BasisConvert operation (step 3.2 in Figure 5 (b)) by allowing
data reads and writes at the same time as we perform inner
products in limb-wise fashion. Thus, we eliminate the need
to switch between limb-wise and slot-wise accesses, which is
one of the key memory bottlenecks in KeySwitch operation.
Another advantage is that we do not need to fetch all the
KeySwitch keys at once; we only need to fetch the block of the
key corresponding to the α block that has been just extended.
This is feasible as we schedule the KSKIP in between extension
limb generation (instead of generating the extension limbs
all at once). Through these methods, we perform the entire
KSKIP using a small BRAM miscellaneous bank (that can
store only 4 limbs), while hiding the key read latency (which

is about 300 clock cycles) from the main memory behind the
computations. The ModDown (step 5 in Figure 5 (b)) operation
follows a similar operation scheduling as ModUp operation.
Thus, through smart scheduling we enable high data
reuse, exploit inherent limb-wise parallelism and maintain
a uniform address generation logic by avoiding switching
between limb-wise and slot-wise accesses, and further
reduce the main memory traffic by not writing/reading any
resultant ciphertext limbs to the main memory.

VI. EVALUATION

We have designed FAB in Verilog 2001 and synthesized it
using Xilinx Vivado 2020.2 to operate at 300MHz frequency.
The host CPU code is written in C++. FAB RTL code is
packaged into kernel code using the Xilinx Vitis 2020.2
development platform. The kernel code is compiled and linked
into an FPGA executable (.xclbin binary file) by the Vitis
compiler. In the cloud environment, this binary file is mapped
to a Xilinx Alveo U280 FPGA and its execution is initiated
by the host CPU via host code. This accelerator FPGA card
is built on the Xilinx 16nm UltraScale architecture and offers
8GB of HBM2 with up to 460GB/s bandwidth.

A. Resource Utilization

Table IV provides the hardware resource utilization of the
various components of FAB. Overall, FAB requires ∼899K
LUTs, and the functional units have the largest share (∼37%)
of these LUTs. Out of the 2,073K flip flops (FFs) used by
FAB, most of them are utilized by the distributed register file,
control logic, and the functional unit. The entire 56.7% of the
DSP utilization is for the modular arithmetic operations within
the functional units. As mentioned in Section IV-B, FAB uses
almost the entire URAM and BRAM blocks on FPGA, with a
95.24% BRAM utilization and 99.8% URAM utilization.

9

B. Basic FHE Operations

Table V presents the execution time (in ms) for basic
operations in the CKKS FHE scheme and compares the
performance with the existing GPU implementation [34]. Note
that state-of-the-art CPU implementation [7] does not give low-
level benchmarks for the individual homomorphic operation.
The GPU numbers used in the table are the most optimized
performance numbers reported in [34] for the parameter
set N = 216, logQ = 1693, and 100b security. We compare
against these numbers as the parameter set is closest to
our parameter set. FAB achieves an average 2.4× speedup
when compared to GPU in absolute execution time for these
basic primitives. For completeness, in Table VI, we compare
the performance of NTT and Mult with an existing state-
of-the-art FPGA implementation (HEAX [45]). For a fair
comparison, we use the same parameter set (N = 214 and
logQ = 438) as used in HEAX. FAB achieves an average
3× higher throughput (measured in operations per second)
when compared to HEAX. The performance gain in FAB is
largely due to low latency modular arithmetic modules within
functional units, fine-grained pipelining of the functional units,
highly optimized NTT datapath, and the modified KeySwitch
datapath.

C. Bootstrapping Latency

As described earlier, the bootstrapping operation is the
key bottleneck for performing unbounded FHE computations.
In this section, we compare the bootstrapping latency of
FAB with the existing state-of-the-art CPU, GPU, and ASIC
implementations. Throughout this section, we refer to these
implementations as Lattigo [7] (CPU implementation) and GPU-
1 for 97-bit security and GPU-2 for 173-bit security (GPU
implementations of [34]). For comparison, we use the amortized
per slot multiplication time TMult,a/slot defined in Equation 1.
This is the same bootstrapping performance metric used by
these existing works. As seen in Table VII, FAB outperforms
CPU, GPU-1, and GPU-2 implementations in absolute time by
at least 1.5×. This is despite the lower operating frequency
of FAB, and when comparing the clock cycles against prior
works FAB compares even more favorably. FAB exhibits at
least a 6.14× better performance due to improved arithmetic
intensity by overcoming memory bandwidth bottleneck.

In Table VII, for completeness, we also compare FAB against
ASIC designs for bootstrapping operation. FAB is about 9×
(absolute time) and 4× (clock cycles) slower than the best
case numbers reported by BTS-2 [38]. This difference in
performance is mainly because of the large on-chip memory and

TABLE IV
FAB HARDWARE RESOURCE UTILIZATION

Resource Available Utilized % Utilization

LUTs 1,304K 899,232 68.96
FFs 2,607K 2,073K 79.54
DSP 9,024 5,120 56.70

BRAM 4,032 3,840 95.24
URAM 962 960 99.80

TABLE V
EXECUTION TIME (IN MILLISEC) FOR PERFORMING BASIC CKKS FHE

OPERATIONS AND SPEEDUP ACHIEVED USING FAB.

Operation FAB GPU [34] Speedup vs GPU

Add 0.04 0.16 3.85×
Mult 1.71 2.96 1.73×
Rescale 0.19 0.49 2.62×
Rotate 1.57 2.55 1.62×

TABLE VI
THROUGHPUT (IN OPERATIONS PER SECOND) COMPARISON FOR BASIC

OPERATIONS WITH HEAX. PARAMETER SET USED N = 214 AND logQ = 438.

Operation FAB HEAX [45] Speedup vs HEAX

NTT 167K 42K 3.97×
Mult 5.7K 2.6K 2.12×

a large number of modular multipliers used for computation in
BTS when compared to FAB. FAB is about 3× (absolute time)
slower than numbers reported by CraterLake [50] (abbreviated
as CL in Table VII) for their parameters achieving 128-bit
security. However, CraterLake’s performance is comparable to
FAB in clock cycles implying that the improvement in absolute
time only comes from the higher operating frequency (1GHz)
in CraterLake. FAB is about 30× (absolute time) and 10×
(clock cycles) slower than ARK [36]. ARK achieves better
performance with its algorithmic optimization that reduces the
number of switching keys required in bootstrapping. However,
this optimization relies on the 512MB on-chip memory and
is not easily portable to other designs. We do not compare
FAB against F1 [49] as F1 does not support parameters large
enough for fully-packed bootstrapping.

D. Logistic Regression (LR) Training

In this section, we evaluate the use of FAB to perform LR
model training for binary classification over a subset of MNIST
data [18] labeled 3 and 8. This is the task considered in the
HELR work [28], and it is the same task used to benchmark all
works we compare against. This subset of the dataset contains
11,982 training samples where each sample has 196 features.
The LR model is trained for 30 iterations with 1024 encrypted
images in a mini-batch. We adopt the sequence of operations
proposed by Han et al. [28] for efficient logistic regression
training on encrypted data. Using this algorithm, LR training for
30 iterations has an evaluation depth of 150, and thus, it requires
us to perform a bootstrapping operation after every iteration.
We perform training using sparsely-packed ciphertexts (using
256 slots only). This is largely to perform a fair comparison
with existing works that have only considered sparsely-packed
ciphertexts (256 slots) for LR training. This is because 256
slots are optimal for the specific benchmark task, but our LR
training implementation can easily scale to larger applications
(i.e. applications that require fully-packed bootstrapping).

To evaluate LR training, we present two different FPGA
designs here; 1) FAB-1: a single-FPGA design and 2) FAB-2: a
multi-FPGA design that utilizes eight FPGAs. Note that FAB-2
will incur eight times the resource utilization as FAB-1. We

10

TABLE VII
SPEEDUP ACHIEVED USING FAB WHEN PERFORMING BOOTSTRAPPING

OPERATIONS. SLOTS DEFINE THE NUMBER OF PACKED SLOTS IN
CIPHERTEXT WHILE BOOTSTRAPPING. BOOTSTRAPPING TIME IS COMPUTED

IN Tmult,a/slot .

Work Freq.
(in
GHz)

Slots Time
(in µs)

Speedup
achieved
(Time)

Speedup
achieved
(Cycles)

Lattigo [7] 3.5 215 101.78 213× 2485×
GPU-1 [34] 1.2 215 0.716 1.50× 6.14×
GPU-2 [34] 1.2 216 0.740 1.55× 6.35×
BTS-2 [38] 1.2 216 0.0455 0.09× 0.38×
CL [50] 1 215 0.13 0.27× 0.91×
ARK [36] 1 215 0.014 0.03× 0.10×
FAB 0.3 215 0.477 - -

follow the data partitioning and packing technique proposed
in Han et al. [28] to pack the data efficiently into ciphertexts.
Our FAB-1 design is a straightforward mapping of FAB onto
an Alveo U280 board with all the ciphertexts and KeySwitch
keys (∼6.65GB data) offloaded to the HBM2. For the FAB-2
design, we instantiate FAB on all eight FPGA boards in the
cloud environment, where each FPGA is connected to a host
CPU. We form FPGA pairs, and in each pair, we designate
a primary FPGA and a secondary FPGA to enable point-to-
point communication between the FPGAs. In addition, one of
the eight FPGAs acts as a master FPGA that can broadcast a
ciphertext to the entire pool of FPGAs. We limit the impact
of network communication on the performance of our FAB-2
design by using direct network communication between the
FPGAs instead of involving the host CPUs. All the host CPUs
launch the required kernel code on their respective FPGAs in
parallel, which allows multiple ciphertexts to be processed in
parallel. Since the ciphertexts are sparsely-packed, each FPGA
needs to compute on 128 ciphertexts. Communication between
the FPGAs is required only twice during an entire LR iteration.
This communication overhead is about 12ms per LR iteration.

Table VIII presents the average training time per LR iteration.
In terms of absolute execution times, FAB-2 is 456× and 9.5×
faster than existing state-of-the-art CPU and GPU implementa-
tions. When comparing to ASIC proposals, FAB-2 outperforms
F1 by 12× while achieving a competitive performance when
compared to BTS-2. However, ARK achieves about 10× better
performance than FAB. We do not compare against CraterLake
as we do not know their average training time per iteration.
They do not explicitly specify the number of iterations that
were used to train the logistic regression model.

Compared to FAB-1, FAB-2 (using eight FPGAs) does
not observe a corresponding 8× speedup as the amount of
parallelism that can be extracted is limited by the bootstrapping
runtime (following Amdahl’s law). FAB is designed to perform
bootstrapping on a single FPGA, so the performance increase
is due to parallelizing the other operations within a logistic
regression iteration. As part of future work, we would like
to explore the possibility of improving the performance
of FAB-2 by scaling bootstrapping operation to multiple
FPGAs through instruction-level parallelism. This will require

TABLE VIII
PERFORMANCE COMPARISON FOR LR TRAINING WHEN USING

SPARSELY-PACKED CIPHERTEXTS [38]. TIME REPORTED HERE IS THE
AVERAGE TRAINING TIME PER ITERATION.

Work Time
(in sec)

Speedup achieved us-
ing FAB-2 (Time)

Speedup achieved us-
ing FAB-2 (Cycles)

Lattigo [7] 37.05 456× 5318×
GPU-2 [34] 0.775 9.5× 39×
F1 [49] 1.024 12× 41×
BTS-2 [38] 0.028 0.3× 1.4×
ARK [36] 0.008 0.01× 0.33×
FAB-1 0.103 1.3× 1.3×
FAB-2 0.081 - -

distributing the operations (on a single ciphertext) to multiple
FPGAs while minimizing data hazards and managing the large
communication overhead.
Comparison with Leveled FHE Approach: As mentioned
earlier, we use bootstrapping to periodically denoise the
ciphertext. We briefly compare our bootstrapping-based FHE
approach against the leveled FHE approach. The leveled FHE
approach avoids bootstrapping by having the cloud host send a
ciphertext with no remaining compute levels back to the client,
who holds the decryption key. The client then decrypts the
ciphertext and re-encrypts the resulting message into a new
ciphertext with some fixed number of compute levels. This
new ciphertext is sent back to the cloud host to proceed with
the homomorphic computation.

A single iteration of logistic regression consumes 5 compute
levels and requires bootstrapping at the end of each iteration.
For logistic regression training with the leveled FHE approach,
a single logistic regression iteration without bootstrapping
takes 25.8ms. The encryption and decryption on the client
(using the sub-routines in the SEAL library) take 162ms and
8.8ms with a 2.8GHz CPU respectively. Data transfer between
the cloud host and FPGA (back and forth) via PCIe takes
40ms and data transfer between cloud host and the client
takes 12.7 seconds. Hence, the total time for a single logistic
regression iteration is 12.937 seconds. In our FAB design, a
single logistic regression iteration with bootstrapping using
eight FPGAs takes just 0.081 seconds, which is 160× faster
than the leveled FHE approach.

Applicability to Other Schemes: Although FAB implements
the CKKS scheme-specific bootstrapping, our implementations
of the basic operations such as Add, Mult, and Rotate that
are common across schemes can be used for the BGV [9]
and B/FV [8, 20] schemes. FHE schemes like TFHE [15]
and FHEW [19] evaluate Boolean gates on encrypted
data while incurring several GB memory footprint for
encrypted keys [24]. Even for these schemes, optimizations
similar to our KeySwitch datapath and smart operation
scheduling are very relevant. However, the specific steps
within the KeySwitch operation differ across schemes, and
so a thorough analysis is required to determine the exact
operation scheduling so as to develop a balanced FPGA design.

11

Porting FAB to Other FPGAs: Broadly, the optimizations
that we have proposed in this paper are generic and can be
used as is when porting FAB to other FPGAs. For example, we
can port the FAB design without any modification to the latest
Intel Agilex M series FPGA [1], which has ∼48 MB on-chip
memory, 3.9 million LUTs, 12K DSP blocks, and provides
access to HBM. These resources are more than enough for
our FAB design. There are other smaller FPGAs like Xilinx
Alveo U50 with HBM access, which do not have enough on-
chip resources. So one cannot map our FAB design as is, but
our optimization ideas like KeySwitch datapath optimization
and smart operation scheduling can still be leveraged when
designing a solution for these smaller FPGAs.

VII. RELATED WORK

CPU/GPU-based Acceleration: Many software libraries such
as SEAL [51], HELib [32, 25], PALISADE [52], Lattigo [39],
and HEAAN [35] implement the CKKS scheme on CPU.
Despite these efforts, a pure-CPU implementation of FHE
remains impractical. Several works [44, 37, 56, 23] focus on
accelerating just the NTT computation on a GPU. Jung et al.
[34] proposed the first GPU implementation of the CKKS
scheme that includes basic operations as well as bootstrapping.

FPGA-based Acceleration: HEAX [45] was one of the early
FPGA-based HE accelerators, but it accelerates only CKKS
encrypted multiplication. Other operations are deferred to a
host processor. Similarly, there are a couple of other limited
FPGA-based CKKS acceleration efforts that only implement
NTT [55] and KeySwitch [30] operations. All three FPGA
implementations support only smaller parameter sets, which
is not sufficient for bootstrapping or applications such as
logistic regression training or ResNet. Given these limitations,
it is unclear how to implement a full-scale CKKS FHE
workload and an end-to-end application on an FPGA using
HEAX. There are several other FPGA-based acceleration
efforts [47, 48, 53, 41] that implement basic FHE operations
for BFV scheme.

ASIC-based Acceleration: Samardzic et al. presented the
F1 [49] and CraterLake [50] hardware accelerator architectures
for FHE computations. Although the F1 accelerator supports
multiple FHE schemes including BGV [22], CKKS, and
GSW [33], it only supports operations on smaller parameter
sets. To support multi-slot bootstrapping and larger real-time
applications (e.g. machine learning), larger parameters are
required, making the F1 chip unsuitable for these applica-
tions. CraterLake implements packed bootstrapping for large
parameters using a large number of modular multipliers in
their compute block. However, it observes a poor utilization
(∼ 40%) of the functional units during bootstrapping.

Kim et al. proposed the BTS [38] and ARK [36] accelerators
specifically tailored to support CKKS bootstrapping. Both BTS
and ARK employ a massive number of processing elements
to exploit parallelism in various homomorphic operations and
make use of large on-chip memory. BTS, however, does not

modify the underlying algorithm to fully utilize the available
memory bandwidth. This results in unrealized performance
when compared to the resources BTS uses. ARK includes an
algorithmic optimization that reduces the memory bandwidth
of CKKS bootstrapping by reducing the number of switching
keys required in the homomorphic FFT evaluation. However,
this optimization crucially relies on a large on-chip memory
(at least a few hundred MB).

Broadly, ASIC solutions will always have higher perfor-
mance than FPGA solutions, but ASIC solutions are a lot more
expensive than FPGA solutions. In addition, ASIC solutions
are not future-proof and will require a non-trivial amount of
redesign as the FHE algorithms evolve in the future.

VIII. CONCLUSION

We propose FAB, an FPGA-based accelerator for boot-
strappable FHE. FAB leverages a combination of algorithmic
and architectural optimizations to overcome the memory
bandwidth bottleneck and to perform the first-ever fully-packed
bootstrapping on FPGA for a practical parameter set. Through
datapath optimizations and smart operation scheduling, FAB
efficiently utilizes the limited compute and memory resources
on the FPGA to deliver 456× and 9.5× better performance
than CPU and GPU, respectively, for LR training application.
More importantly, for the same LR training application FAB
uses only currently-existing hardware while delivering practical
performance at a fraction of ASIC design costs for bootstrap-
pable FHE. FAB is also immediately accessible to the general
public as all the resources required to support FAB exist in
public commercial cloud environments.

ACKNOWLEDGEMENT

This research was supported by RedHat Collaboratory, and
in part by DARPA under Agreement No. HR00112020023 and
by an NSF grant CNS-2154149.

REFERENCES

[1] “Intel Agilex M Series,” https://www.intel.com/content/www/us/en/
products/details/fpga/agilex/m-series.html, 08 2022, Intel, Santa Clara,
CA.

[2] C. Aguilar-Melchor, “Nfllib: Ntt-based fast lattice library,” in Cryptogra-
phers’ Track at the RSA Conference. Springer, 2016, pp. 341–356.

[3] A. Al Badawi, B. Veeravalli, C. F. Mun, and K. M. M. Aung,
“High-performance fv somewhat homomorphic encryption on gpus:
An implementation using cuda,” IACR Transactions on Cryptographic
Hardware and Embedded Systems, pp. 70–95, 2018.

[4] M. R. Albrecht, R. Player, and S. Scott, “On the concrete hardness of
learning with errors,” Cryptology ePrint Archive, Report 2015/046, 2015,
https://ia.cr/2015/046.

[5] M. Asiatici and P. Ienne, “Large-scale graph processing on fpgas with
caches for thousands of simultaneous misses,” in 2021 ACM/IEEE
48th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 2021, pp. 609–622.

[6] P. Barrett, “Implementing the Rivest-Shamir-Adleman public key encryp-
tion algorithm on a standard digital signal processor,” in Advances in
Cryptology — CRYPTO’ 86, A. M. Odlyzko, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1987, pp. 311–323.

[7] J.-P. Bossuat, C. Mouchet, J. Troncoso-Pastoriza, and J.-P. Hubaux,
“Efficient bootstrapping for approximate homomorphic encryption with
non-sparse keys,” in Advances in Cryptology – EUROCRYPT 2021,
A. Canteaut and F.-X. Standaert, Eds. Cham: Springer International
Publishing, 2021, pp. 587–617.

12

https://www.intel.com/content/www/us/en/products/details/fpga/agilex/m-series.html
https://www.intel.com/content/www/us/en/products/details/fpga/agilex/m-series.html
https://ia.cr/2015/046

[8] Z. Brakerski, “Fully homomorphic encryption without modulus switching
from classical gapsvp,” in Advances in Cryptology – CRYPTO 2012,
R. Safavi-Naini and R. Canetti, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pp. 868–886.

[9] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled) fully
homomorphic encryption without bootstrapping,” in ITCS ’12, 2012.

[10] Z. Brakerski and V. Vaikuntanathan, “Efficient fully homomorphic
encryption from (standard) LWE,” in IEEE 52nd Annual Symposium on
Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA,
October 22-25, 2011, R. Ostrovsky, Ed. IEEE Computer Society, 2011,
pp. 97–106. [Online]. Available: https://doi.org/10.1109/FOCS.2011.12

[11] H. Chen, I. Chillotti, and Y. Song, “Improved bootstrapping for
approximate homomorphic encryption,” in Advances in Cryptology –
EUROCRYPT 2019, Y. Ishai and V. Rijmen, Eds. Cham: Springer
International Publishing, 2019, pp. 34–54.

[12] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, “Bootstrapping
for approximate homomorphic encryption,” in Annual International
Conference on the Theory and Applications of Cryptographic Techniques.
Springer, 2018, pp. 360–384.

[13] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, “A full RNS
variant of approximate homomorphic encryption,” in Selected Areas in
Cryptography – SAC 2018, C. Cid and M. J. Jacobson Jr., Eds. Cham:
Springer International Publishing, 2019, pp. 347–368.

[14] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption
for arithmetic of approximate numbers,” in Advances in Cryptology
– ASIACRYPT 2017, T. Takagi and T. Peyrin, Eds. Cham: Springer
International Publishing, 2017, pp. 409–437.

[15] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “Tfhe: fast
fully homomorphic encryption over the torus,” Journal of Cryptology,
vol. 33, no. 1, pp. 34–91, 2020.

[16] W. Dai and B. Sunar, “cuhe: A homomorphic encryption accelerator
library,” in International Conference on Cryptography and Information
Security in the Balkans. Springer, 2015, pp. 169–186.

[17] L. de Castro, R. Agrawal, R. T. Yazicigil, A. P. Chandrakasan,
V. Vaikuntanathan, C. Juvekar, and A. Joshi, “Does fully homomorphic
encryption need compute acceleration?” CoRR, vol. abs/2112.06396,
2021. [Online]. Available: https://arxiv.org/abs/2112.06396

[18] L. Deng, “The mnist database of handwritten digit images for machine
learning research [best of the web],” IEEE signal processing magazine,
vol. 29, no. 6, pp. 141–142, 2012.

[19] L. Ducas and D. Micciancio, “Fhew: bootstrapping homomorphic
encryption in less than a second,” in Annual International Conference
on the Theory and Applications of Cryptographic Techniques. Springer,
2015, pp. 617–640.

[20] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic
encryption,” Cryptology ePrint Archive, Report 2012/144, 2012, https:
//ia.cr/2012/144.

[21] C. Gentry, A fully homomorphic encryption scheme. Stanford university,
2009.

[22] C. Gentry, S. Halevi, C. Peikert, and N. P. Smart, “Ring switching in bgv-
style homomorphic encryption,” in International Conference on Security
and Cryptography for Networks. Springer, 2012, pp. 19–37.

[23] J.-Z. Goey, W. K. Lee, B.-M. Goi, and W.-S. Yap, “Accelerating number
theoretic transform in gpu platform for fully homomorphic encryption,”
The Journal of Supercomputing, vol. 77, 02 2021.

[24] S. Gupta, R. Cammarota, and T. Rosing, “Memfhe: End-to-end com-
puting with fully homomorphic encryption in memory,” arXiv preprint
arXiv:2204.12557, 2022.

[25] S. Halevi et al., “Algorithms in helib,” in Advances in Cryptology –
CRYPTO 2014. Springer, 2014, pp. 554–571.

[26] S. Halevi, Y. Polyakov, and V. Shoup, “An improved rns variant of
the bfv homomorphic encryption scheme,” in Topics in Cryptology –
CT-RSA 2019 - The Cryptographers’ Track at the RSA Conference 2019,
Proceedings, M. Matsui, Ed. Germany: Springer Verlag, 2019, pp.
83–105.

[27] K. Han, M. Hhan, and J. H. Cheon, “Improved homomorphic discrete
fourier transforms and fhe bootstrapping,” IEEE Access, vol. 7, pp.
57 361–57 370, 2019.

[28] K. Han, S. Hong, J. H. Cheon, and D. Park, “Efficient logistic regression
on large encrypted data,” Cryptology ePrint Archive, 2018.

[29] K. Han and D. Ki, “Better bootstrapping for approximate homomorphic
encryption,” in Topics in Cryptology – CT-RSA 2020, S. Jarecki, Ed.
Cham: Springer International Publishing, 2020, pp. 364–390.

[30] M. Han, Y. Zhu, Q. Lou, Z. Zhou, S. Guo, and L. Ju, “coxhe: A software-
hardware co-design framework for fpga acceleration of homomorphic
computation,” in 2022 Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE, 2022, pp. 1353–1358.

[31] D. Hankerson, A. J. Menezes, and S. Vanstone, Guide to elliptic curve
cryptography. Springer Science & Business Media, 2006.

[32] “Open source (release 2.2.1),” https://github.com/homenc/HElib, Oct.
2021.

[33] R. Hiromasa, M. Abe, and T. Okamoto, “Packing messages and optimiz-
ing bootstrapping in gsw-fhe,” IEICE TRANSACTIONS on Fundamentals
of Electronics, Communications and Computer Sciences, vol. 99, no. 1,
pp. 73–82, 2016.

[34] W. Jung, S. Kim, J. H. Ahn, J. H. Cheon, and Y. Lee, “Over 100x faster
bootstrapping in fully homomorphic encryption through memory-centric
optimization with gpus,” IACR Transactions on Cryptographic Hardware
and Embedded Systems, pp. 114–148, 2021.

[35] A. Kim, “HEAAN,” Online: https://github.com/snucrypto/HEAAN, 2018.
[36] J. Kim, G. Lee, S. Kim, G. Sohn, J. Kim, M. Rhu, and J. H. Ahn, “Ark:

Fully homomorphic encryption accelerator with runtime data generation
and inter-operation key reuse,” arXiv preprint arXiv:2205.00922, 2022.

[37] S. Kim, W. Jung, J. Park, and J. H. Ahn, “Accelerating number theoretic
transformations for bootstrappable homomorphic encryption on GPUs,”
in 2020 IEEE International Symposium on Workload Characterization
(IISWC). IEEE, 2020, pp. 264–275.

[38] S. Kim, J. Kim, M. J. Kim, W. Jung, M. Rhu, J. Kim, and J. H. Ahn,
“Bts: An accelerator for bootstrappable fully homomorphic encryption,”
arXiv preprint arXiv:2112.15479, 2021.

[39] “Lattigo 1.3.0,” Online: http://github.com/ldsec/lattigo, Dec. 2019, ePFL-
LDS.

[40] S. Li, D. Niu, Y. Wang, W. Han, Z. Zhang, T. Guan, Y. Guan, H. Liu,
L. Huang, Z. Du et al., “Hyperscale fpga-as-a-service architecture for
large-scale distributed graph neural network,” in Proceedings of the 49th
Annual International Symposium on Computer Architecture, 2022, pp.
946–961.

[41] A. C. Mert, E. Öztürk, and E. Savacs, “Design and implementation
of encryption/decryption architectures for bfv homomorphic encryption
scheme,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 28, no. 2, pp. 353–362, 2019.

[42] A. Munshi, “The opencl specification,” in 2009 IEEE Hot Chips 21
Symposium (HCS). IEEE, 2009, pp. 1–314.

[43] A. Norton and A. J. Silberger, “Parallelization and performance analysis
of the cooley? tukey fft algorithm for shared-memory architectures,”
IEEE Transactions on Computers, vol. 36, no. 05, pp. 581–591, 1987.

[44] Ö. Özerk, C. Elgezen, A. C. Mert, E. Öztürk, and E. Savacs, “Efficient
number theoretic transform implementation on gpu for homomorphic
encryption,” The Journal of Supercomputing, vol. 78, no. 2, pp. 2840–
2872, 2022.

[45] M. S. Riazi, K. Laine, B. Pelton, and W. Dai, “Heax: An architecture
for computing on encrypted data,” in Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2020, pp. 1295–1309.

[46] R. L. Rivest, L. Adleman, and M. L. Dertouzos, “On data banks and
privacy homomorphisms,” Foundations of Secure Computation, Academia
Press, pp. 169–179, 1978.

[47] S. S. Roy, K. Järvinen, J. Vliegen, F. Vercauteren, and I. Verbauwhede,
“Hepcloud: An fpga-based multicore processor for fv somewhat homo-
morphic function evaluation,” IEEE Transactions on Computers, vol. 67,
no. 11, pp. 1637–1650, 2018.

[48] S. S. Roy, F. Turan, K. Jarvinen, F. Vercauteren, and I. Verbauwhede,
“Fpga-based high-performance parallel architecture for homomorphic
computing on encrypted data,” in 2019 IEEE International symposium
on high performance computer architecture (HPCA). IEEE, 2019, pp.
387–398.

[49] N. Samardzic, A. Feldmann, A. Krastev, S. Devadas, R. Dreslinski,
C. Peikert, and D. Sanchez, “F1: A fast and programmable accelerator for
fully homomorphic encryption,” in MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture, 2021, pp. 238–252.

[50] N. Samardzic, A. Feldmann, A. Krastev, N. Manohar, N. Genise,
S. Devadas, K. Eldefrawy, C. Peikert, and D. Sanchez, “Craterlake:
a hardware accelerator for efficient unbounded computation on encrypted
data,” in Proceedings of the 49th Annual International Symposium on
Computer Architecture, 2022, pp. 173–187.

[51] “Microsoft SEAL (release 3.7),” https://github.com/Microsoft/SEAL, Sep.
2021, microsoft Research, Redmond, WA.

13

https://doi.org/10.1109/FOCS.2011.12
https://arxiv.org/abs/2112.06396
https://ia.cr/2012/144
https://ia.cr/2012/144
https://github.com/homenc/HElib
https://github.com/snucrypto/HEAAN
http://github.com/ldsec/lattigo
https://github.com/Microsoft/SEAL

[52] D. Technologies, “PALISADE library,” Online: https://gitlab.com/
palisade/palisade-release, 2019.

[53] F. Turan, S. S. Roy, and I. Verbauwhede, “Heaws: An accelerator for
homomorphic encryption on the amazon aws fpga,” IEEE Transactions
on Computers, vol. 69, no. 8, pp. 1185–1196, 2020.

[54] M. A. Will and R. K. Ko, “Computing mod without mod,” Cryptology
ePrint Archive, 2014.

[55] G. Xin, Y. Zhao, and J. Han, “A multi-layer parallel hardware architecture
for homomorphic computation in machine learning,” in 2021 IEEE
International Symposium on Circuits and Systems (ISCAS). IEEE, 2021,
pp. 1–5.

[56] Y. Zhai, M. Ibrahim, Y. Qiu, F. Boemer, Z. Chen, A. Titov, and
A. Lyashevsky, “Accelerating Encrypted Computing on Intel GPUs,”
ArXiv, 2021.

14

https://gitlab.com/palisade/palisade-release
https://gitlab.com/palisade/palisade-release

	Introduction
	Background
	The CKKS FHE Scheme
	Homomorphic Levels & RNS Representation
	Number Theoretic Transform
	Bootstrapping
	Bootstrapping Performance Metric
	Switching Keys & Major Subroutines

	Practical Parameter Set for FAB

	Overall System Architecture
	FAB Microarchitecture
	Functional Unit
	On-chip Memory
	Register File
	FIFOs

	Datapath Optimizations
	NTT/iNTT datapath
	KeySwitch datapath

	Evaluation
	Resource Utilization
	Basic FHE Operations
	Bootstrapping Latency
	Logistic Regression (LR) Training

	Related Work
	Conclusion
	References

