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Abstract—As the complexity of modern processors has increased
over the years, developing effective verification strategies to iden-
tify bugs prior to manufacturing has become critical. Inspired by
software fuzzing, a technique commonly used for software testing,
multiple recent works use hardware fuzzing for the verification
of Register-Transfer Level (RTL) designs. However, these works
suffer from several limitations such as lack of support for widely-
used Hardware Description Languages (HDLs) and misleading
coverage-signals that misidentify “interesting” inputs. Towards
overcoming these shortcomings, we present ProcessorFuzz, a
processor fuzzer that guides the fuzzer with a novel CSR-transition
coverage metric. ProcessorFuzz monitors the transitions in Control
and Status Registers (CSRs) as CSRs are in charge of controlling
and holding the state of the processor. Therefore, transitions in
CSRs indicate a new processor state, and guiding the fuzzer based
on this feedback enables ProcessorFuzz to explore new processor
states. We evaluated ProcessorFuzz with three real-world open-
source processors – Rocket, BOOM, and BlackParrot. Proces-
sorFuzz triggered a set of ground-truth bugs 1.23× faster (on
average) than DIFUZZRTL. Moreover, our experiments exposed
8 new bugs across the three RISC-V cores and one new bug in a
reference model. All nine bugs were confirmed by the developers
of the corresponding projects.

Index Terms—greybox fuzzing, processor, coverage, RTL veri-
fication, RISC-V

I. INTRODUCTION

As the complexity of processor designs has continuously
grown over the years, verification has become one of the most
challenging tasks in processor manufacturing. The state-space
of a complex processor is extremely large, while the processor
vendors have limited time and resources for verification. An
exhaustive verification (i.e., testing each and every scenario)
is an unrealistic goal to achieve, and therefore, a high-quality
verification methodology is essential to discover bugs before
fabrication. A timely, pre-silicon bug discovery can circumvent
potentially millions-of-dollars of losses [25]. Otherwise, undis-
covered bugs can manifest as severe functional and security
holes in both proprietary and open-source processors [11], [13],
[26], [28], [32], [58], [61].

Dynamic verification techniques [4], [14], [16], [47], [55],
[59] are commonly used as part of the processor verification
process. Dynamic verification involves simulating a Design
Under Test (DUT) with a test input and analyzing the be-
havior of the DUT during or after simulation to identify
bugs. Recent works [24], [33], [57] demonstrate that Coverage-
based Greybox Fuzzing (CGF), a widely-used software testing

technique, can be adapted as a dynamic verification technique
to identify bugs in a processor design if certain differences
between hardware and software are addressed.

Prior works on processor fuzzing mainly focus on addressing
two major challenges. First, code coverage metrics used for
fuzzing software programs (basic block, branch coverage, etc.)
are not well-suited for fuzzing hardware [24], [55]. Second,
a bug in a processor design does not result in an observable
anomaly (i.e., crash) during testing as opposed to many soft-
ware programs which can indicate the presence of bugs by
throwing memory violation errors or raising exceptions.

To address the first challenge, researchers have introduced
a variety of coverage metrics [24], [33], [35], [45] such as
multiplexer toggle coverage and register coverage that are
tailored for hardware. In the context of a processor, the proces-
sor is effectively a complex Finite State Machine (FSM) that
consists of a large number of states. Exploring different states in
‘processor FSM’ is the key to identifying bugs in the processor.
Therefore, hardware-specific coverage metrics mainly aim to
guide the fuzzer towards different uncovered ‘processor FSM’
states. These metrics take the hardware intrinsic (e.g., wire
connections) into account rather than merely the code structure
of the hardware. For instance, DIFUZZRTL [24], a state-of-
the-art processor fuzzer, introduces register coverage metric
where the goal is to monitor value changes in registers that
control multiplexer selection signals. The intuition is that a
particular value in these registers represents a unique state in the
‘processor FSM’ and guiding the fuzzer based on this feedback
explores additional FSM states.

DIFUZZRTL’s register coverage metric improves on prior
works [1], [33], [44] in terms of scalability, efficiency, and
precision. However, we make a key observation that the register
coverage can be a highly misleading metric for a processor
fuzzer. Specifically, we find that DIFUZZRTL monitors many
datapath registers which have minimal control over the current
FSM state of the processor. The coverage increase resulting
from the datapath registers does not provide meaningful infor-
mation related to the current FSM state of the processor. This
results in a scenario where inputs that affect datapath register
coverage are incorrectly being classified as ‘interesting’ inputs,
which in turn leads to wasted fuzzing time.

To address the second challenge, existing processor fuzzers
[20], [24], [29], [34] adapt differential testing from the software



domain to the hardware domain. Differential testing in software
compares outputs of multiple programs that have the same
functional behavior and checks for inconsistencies. In the
hardware domain, the results of an Register Transfer Level
(RTL) simulator are compared with those of an Instruction
Set Architecture (ISA) simulator. An RTL simulator is used to
simulate the execution of an instruction stream on the detailed
microarchitecture implementation of the processor. The ISA
simulator is used to simulate the functional behavior of the
processor design and used as a reference model. A difference
in the execution output of RTL simulation and ISA simulation
indicates a potential bug in the processor.

In this work, we present ProcessorFuzz, a processor fuzzer
that implements two novel features. First, ProcessorFuzz uses
a new coverage metric called CSR-transition coverage to effec-
tively guide processor fuzzing towards exploring unique pro-
cessor states. Specifically, it monitors transitions in Control and
Status Registers (CSRs) that form the core of the architecture
specifications. Our intuition is that certain CSRs dictated by
ISA readily expose the current ‘processor FSM’ state (e.g.,
current privilege mode, the event that caused floating point
mode exception), and thus the transitions in these CSRs signify
a new ‘processor FSM’ state.

ProcessorFuzz’s second feature is that it uses ISA simulation
to rapidly determine if a test input is interesting. Prior works
rely on RTL simulation for the same goal, which is time-
consuming. In fact, this problem gets compounded if the
coverage guidance is misleading and results in the execution of
repetitive test inputs. ISA simulation is significantly faster than
RTL simulation1. Hence, ProcessorFuzz can efficiently elimi-
nate repetitive test inputs and focus on as many qualitatively
distinct test input patterns as possible to expose bugs faster.

We evaluate ProcessorFuzz using a variety of widely-used
open-source RISC-V based processors [2], [9], [48] designed
in different HDLs (i.e., Chisel and SystemVerilog). These
processors vary in microarchitectural implementations such as
their pipeline depths, execution type (i.e., in-order and out-of-
order execution), etc. We compare the bug-finding effectiveness
of ProcessorFuzz against the state-of-the-art register coverage
guided DIFUZZRTL. On average, for the bugs found by
DIFUZZRTL, ProcessorFuzz triggers bugs 1.23× faster than
DIFUZZRTL. In addition, ProcessorFuzz revealed 8 new bugs
in widely-used open-source processors and one new bug in a
reference model.

In summary, we make the following contributions:
• We propose ProcessorFuzz, a new processor fuzzing

mechanism. ProcessorFuzz uses a novel CSR-transition
coverage (CTC) metric, to effectively guide processor
fuzzing towards interesting processor states.

• We propose to use the ISA simulator as part of a coverage
feedback mechanism to rapidly identify interesting test
inputs, thereby accelerating the bug-finding process.

• We demonstrate the practicality of ProcessorFuzz using
3 different open-sourced RISC-V processors and present

1As a reference point, ISA simulation is 79× faster than RTL simulation
for the open-source RISC-V based BOOM [9] processor.

eight new bugs identified in those three different processor
designs and one new bug in a reference model.

II. BACKGROUND AND MOTIVATION

In this section, we first briefly explain coverage-based grey-
box fuzzing (CGF) for software. Next, we provide a brief
background of how CGF is adapted as a hardware fuzzing
method (specifically for processor fuzzing) and present the
motivation of our work.

A. Coverage-based Greybox Fuzzing

Fuzzing has gained broad adoption in the software com-
munity due to its effectiveness in bug discovery, scalability,
and practicality [18], [19], [41]. Fuzzing is the process of
repeatedly running a Program Under Test (PUT) with a large
number of random inputs to discover bugs in software. One
of the widely-used fuzzing variants is CGF which utilizes
the coverage feedback collected from the PUT at runtime.
In each run of the PUT, CGF records coverage (e.g., basic
block coverage, edge coverage, etc.) to determine if the input
is ‘interesting’, i.e., whether it leads to increased coverage. If
so, CGF applies a set of mutations to the ‘interesting’ input
to generate new inputs which are then fed to the PUT in the
next fuzzing rounds. Here, the intuition is that generating new
inputs from coverage increasing ones would cover even more
unexplored code. CGF instruments the code of the program
(either statically or dynamically) with the necessary book-
keeping logic to record coverage during the program execution.

B. Adapting CGF for Processor Fuzzing

Recent works [24], [33], [57] show that CGF can be adapted
as a dynamic verification method for hardware including pro-
cessors. In this section, we briefly explain two important aspects
when adapting CGF to processor fuzzing.
Hardware Execution. In the case of CGF for software, the
fuzzing target is a software program that can be directly
executed on a host machine with a test input after compilation.
However, hardware (e.g., a processor) is not directly executable
on the host machine. A hardware design is implemented with
an RTL abstraction and simulated with an RTL simulator to
evaluate a test input. The RTL design is usually expressed with
an HDL (e.g., Verilog, VHDL).
Bug Detection. Most software fuzzers focus on bugs that man-
ifest as memory safety violations such as segmentation faults.
These types of bugs are relatively easy to detect because they
cause an observable anomaly (i.e., crash) in program behavior.
However, fuzzing to find semantic bugs (e.g., logic errors) is
harder than discovering memory violations because defining
semantic violations is a highly domain-specific task. For these
types of bugs, researchers proposed differential testing [5], [40],
[42], [50] that compares the output of multiple programs with
the same functionality and checks for inconsistent behaviors.
This approach is used by processor fuzzers [20], [24], [34]
where the processor fuzzer provides the same input to both the
RTL simulator and the reference model. Here, the reference
model is an ISA simulator that mimics the behavior of all the
ISA-level operations. The hardware fuzzer extracts the final
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Fig. 1: Overview of DIFUZZRTL’s coverage feedback strategy.

memory states and architectural register values from both the
ISA simulator and the RTL simulator for the same input and
cross-checks the traces. Any mismatch is considered a potential
bug in the processor and is marked for further investigation by
the verification engineer.

C. DIFUZZRTL’s Register Coverage

DIFUZZRTL [24] adapts CGF to capture FSM state tran-
sitions during RTL simulation. The strategy follows a two-
stage approach as depicted in Figure 1. In stage 1⃝, it performs
static analysis to identify a small set of registers in each RTL
module and instruments the RTL with necessary hardware
logic to record register coverage at simulation time. At a
high level, DIFUZZRTL monitors a register if its value is
directly or indirectly used to control a multiplexer selection
signal. DIFUZZRTL creates a circuit graph of the RTL design
where nodes and edges of this graph represent circuit elements
(e.g., multiplexers, wires, ports, registers) and connections,
respectively. Then, it recursively performs a backward data-flow
analysis for each multiplexer’s selection signal and identifies
any register in the traversed path. In stage 2⃝, DIFUZZRTL
monitors value changes in the identified registers during the
RTL simulation. For each clock cycle, DIFUZZRTL hashes
all the values in the identified registers into a coverage map
to represent the current FSM state. If a new hash value is
observed, DIFUZZRTL increases register coverage to signify
that the current test is interesting for further mutations.

DIFUZZRTL’s register coverage improves prior work [33],
[35] in terms of scalability, efficiency, and precision. However,
using register coverage metric for hardware fuzzing can be
highly misleading. At a high level, we observe that a subset of
registers leads to misleading coverage increase, and therefore,
misguides the hardware fuzzer. We provide more details using
an example (illustrated in Figure 1) from the open-source
RISC-V-based Rocket Core [2]. In the multiplication unit of
Rocket Core, there is a 130-bit remainder register in the
MulDiv module that indirectly controls 98 mux selection sig-
nals. Therefore, DIFUZZRTL identifies this register to monitor
during fuzzing2. The change in the value of remainder
results in an increase in coverage. In Figure 2, we demonstrate
the coverage increase resulted from the remainder register
during a 24-hour fuzzing session. First, in Figure 2a, we depict
the coverage progress of different modules in the Rocket core.
Clearly, the MulDiv module (multiplication unit of Rocket
core) dominates the module-wise register coverage. 62% of

2DIFUZZRTL applies some optimizations to reduce search space. As one
of their optimizations, it is able to track only a subset of bits of a register and
therefore; ultimately tracks 98 bits of the remainder register.
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Fig. 2: DIFUZZRTL’s register coverage breakup for Rocket.

overall register coverage results from the MulDiv module at
the end of 24-hours. Figure 2b further shows the contribution
of the remainder register to the coverage increase in the
MulDiv module. Compared to all other registers in the MulDiv
module, remainder register is clearly major factor that
causes increase in register coverage.

Broadly, as pointed out with the above example, DIFUZ-
ZRTL monitors and uses coverage information from reg-
isters even if they are mostly involved in datapath-related
operations and have minimal control over the current FSM
state of the hardware. Unfortunately, data-path registers (e.g.,
remainder) increase search space significantly, yet the cov-
erage increase resulting from data-path registers indeed does
not provide meaningful information to the fuzzer related to the
current hardware state. Therefore, it is not interesting to keep
an input for further mutations if it increases coverage based
on data-path registers. In our work, we present a new coverage
metric that aims to tackle this problem.

III. PROCESSORFUZZ

A. Design Overview

We illustrate the design overview of ProcessorFuzz in Figure
3. In stage (1), ProcessorFuzz is provided with an empty seed
corpus. It populates the seed corpus by generating a set of
random test inputs in the form of assembly programs that
conforms to the target ISA. Next, ProcessorFuzz chooses a
test input from the seed corpus in stage (2) and subsequently
applies a set of mutations (such as removing instructions,
appending instructions, or replacing instructions) on the chosen
input in stage (3). For these three stages, ProcessorFuzz uses
the same methods applied by a prior work [24]. In stage (4),
ProcessorFuzz runs an ISA simulator with one of the mutated
inputs and generates an extended ISA trace log that includes
the value of CSRs for each executed instruction. The Transition
Unit (TU) receives the ISA trace log, extracts the transitions
that occur in the CSRs, and cross-checks each transition against
the Transition Map (TM) in stage (5). The TM is initially empty
and populated with unique CSR transitions during the fuzzing
session. If the observed transition is not present in the TM, it
is classified as a unique transition and added to the TM. In
case the current test input triggers at least one new transition,
the input is deemed interesting and added to the seed corpus
for further mutations. Otherwise, the input is discarded. In
stage (6), ProcessorFuzz runs the RTL simulation of the target
processor with only the interesting mutated input. The RTL
simulation also generates an extended RTL trace log similar to
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I are included within the square brackets in the given order;
mstatus, mcause, scause, medeleg, frm, and fflags.
Transitions are color coded; red and blue for mstatus and
fflags CSR transitions, respectively.

the extended ISA trace log. The ISA trace log and the RTL
trace log are compared in stage (7). Any mismatch between
the logs signifies a potential bug that needs to be confirmed by
a verification engineer usually by manual inspection.

B. Feedback from the ISA Simulation

One design feature of ProcessorFuzz is that it relies on the
ISA simulation to determine if a test input is interesting as
opposed to prior works that rely on the RTL simulation. We
use the ISA simulator to capture the CSR transitions for two
main reasons. First, ISA simulators are generally much faster
in executing a given program in comparison to executing that
program on a processor using the RTL simulation. For instance,
we observed that the RISC-V Spike ISA simulator [53] is,
on average 79× faster than the RTL simulation of the RISC-
V BOOM processor. This speedup provides a considerable
advantage as ProcessorFuzz can then quickly identify if a
test input is interesting without performing the slow RTL
simulation. Eliminating inputs with similar characteristics helps
ProcessorFuzz achieve faster bug discovery times as shown
in Section IV. Indeed, ProcessorFuzz discovered all the bugs
found by the existing processor fuzzer (i.e., DIFUZZRTL).

Second is the reduced effort needed to instrument the sim-
ulator. A simulator needs to be instrumented to generate an
extended trace log with the selected CSRs. An ISA simulator
can be easily instrumented by extending the already available
trace logic with the selected CSRs. The same instrumented ISA
simulator can be used to fuzz any processor design as long as it
has been designed for the same ISA target. In contrast, instru-
menting RTL designs for tracking the coverage metrics requires
extensive effort. Moreover, instrumentation in one HDL does
not readily translate to other HDLs. Additionally, as shown
in Section IV, ProcessorFuzz incurs limited instrumentation
overhead during fuzzing (only 1% in ISA simulator) as opposed
to prior works [30] that instrument processor RTL and result in
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Fig. 5: Abstract state diagram for triggering Bug 2 in Table IV.

higher runtime overheads (e.g., 71% overhead in TheHuzz [30]
and 97% overhead in RFUZZ [33]).

C. CSR-transition Coverage

1) Description of the Metric: As described in Section II-C,
DIFUZZRTL’s register coverage technique monitors many dat-
apath registers (e.g., remainder register) to determine the
current FSM state, which leads to large state space. To test the
processor with as many qualitatively distinct input patterns as
possible, we propose a novel CSR-transition coverage metric.

CSRs are system registers in an ISA specification. These
registers are used to control (e.g., delegated exceptions) or
hold information (e.g., state of the floating-point unit) about
the current architectural state of the processor. Our intuition
for using CSRs is as follows. A processor is a complex FSM
where CSRs have direct control over the current processor state.
Architectural state of the processor (held in the register file
and status registers) represents the state of a program running
in the processor. A value change in a CSR often signifies
an architectural state change such as a value change in a
CSR that stores exception code or privilege level. Therefore,
ProcessorFuzz aims to realize the current state of the processor
by monitoring transitions in CSRs to guide the fuzzer towards
interesting processor states.

CSR transitions can be extracted from either the ISA simu-
lator or the RTL simulation of the processor design. Proces-
sorFuzz uses the ISA simulator to capture CSR transitions.
Specifically, ProcessorFuzz monitors the CSR values resulting
from the execution of the previous and current instructions and
checks if they differ. If so, ProcessorFuzz uses the transition to
determine if the input is interesting as detailed in the following
subsections. We provide a concrete example using the extended
ISA trace log shown in Figure 4 to illustrate how ProcessorFuzz
identifies a CSR transition in the ISA trace log. After execution
of the sret, the CSR value changes which can be seen by
comparing the entries in line 1 and 2 of the ‘Privileged’ column.
Specifically, we observe a CSR-transition in mstatus CSR as
highlighted in red in Figure 4.

2) Why Transitions Instead of Values?: DIFUZZRTL deter-
mines the current processor state based on the register coverage
as detailed in Section II-C. For each newly covered FSM
state, DIFUZZRTL’s register coverage only stores the current
state of the processor and does not consider the previous
state. Unfortunately, this design choice can lead to important
test inputs being discarded by the fuzzer and the fuzzer can
potentially miss out on the discovery of a bug. We illustrate this
in Figure 5. The figure represents a subset of the abstract states
associated with a real-world bug (Bug 2 in Table IV) that we
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identified in a RISC-V processor. The processor starts out in the
N0 state. The bug triggers in the N2 state only if the previous
state is N1. During a coverage-guided fuzzing session, if both
N1 (through P0 transition) and N2 (through P2 transition) are
covered individually, there will not be a coverage increase for
the denoted P1 state transition. Hence, the unique P1 transition
is not particularly driven towards. Thus, the fuzzing session
fails to trigger the bug. Contrarily, by monitoring transitions, we
can detect P1 as a new transition even though N1 and N2 states
are already covered. Overall, we monitor new transitions in
CSRs rather than just identifying unique CSR values to improve
the sensitivity of the feedback metric. Indeed, our rationale is
similar to widely-used software fuzzers’ [19], [38] rationale
that monitor edges in a program instead of basic blocks.

3) CSR Selection Criteria: An ISA specification usually
specifies a large number of CSRs3. Monitoring all available
CSRs for transitions can mislead the fuzzer (as we show in
Section IV) because not all CSRs provide distinctive infor-
mation regarding the current processor state. As an example,
consider instret CSR that holds the total number of retired
instructions. Monitoring the instret results in a scenario
where each committed instruction by the processor results in a
CSR transition. Effectively, ProcessorFuzz would identify any
test input as interesting since the instret causes a transition
after each committed instruction. However, a test would rarely
result in a bug due to a change in committed instruction count.

To aid ProcessorFuzz in determining qualitatively different
inputs, we introduce the following two criteria when selecting
the CSRs that ProcessorFuzz monitors for transitions. First, we
select CSRs that contain status information about the processor
(criteria C1). These CSRs are important because they directly
reveal the current status of the processor. As an example, we
select a CSR that stores the cause for an exception taken
by the processor (e.g., mcause). If a test case results in an
exception, ProcessorFuzz analyzes the cause and differentiates
it from another test case that has a different exception reason
(e.g., misaligned load/store attempt or access faults due to
unauthorized privilege mode). Second, we select any CSR that
is used to set a certain configuration in the processor (criteria
C2). Here, we aim to realize if the processor behaves as
expected under different configurations. For instance, the value
of medeleg can be changed to determine which traps can be
delegated to lower privilege levels (e.g., the load access fault
handled in supervisor mode instead of machine mode). This
way, ProcessorFuzz aims to realize if processor designs can
perform correctly under different configurations (e.g., different
exception delegations) for a particular processor status (e.g., an
exception). Table I lists all the CSRs in the RISC-V ISA that we
used for identifying transitions in the current implementation
of ProcessorFuzz based on the aforementioned two criteria, i.e.,
C1 and C2. We also provide all the CSRs that we excluded (e.g.,
instret) along with details why they are not considered as
part of ProcessorFuzz’s current design in Table II.

Apart from these two criteria, CSR selection can be further
limited depending on the desired scope of verification. For

3As a reference point, RISC-V ISA defines up to 4096 CSRs.

example, if we only want to verify the functionality of the
floating-point unit in the processor, only floating-point CSRs
can be monitored to identify transitions. We quantitatively
demonstrate this capability of ProcessorFuzz in Section IV-B.

D. Transition Unit

As shown in Figure 3, the TU takes an extended ISA trace
log as input and communicates with the TM to output whether
the trace log contains any new transitions. We describe the
complete workflow of the TU in this section.
Filtering Transitions. As a first step, the TU extracts all
CSR transitions in the trace log based on the description in
Section III-C. Then, ProcessorFuzz applies a filter to remove
unnecessary transitions. We observe that not all CSR transitions
represent interesting architectural state changes that are relevant
for testing processors. For instance, a test program running on
the target processor can write to a CSR that contains processor
status, e.g. mstatus CSR in RISC-V ISA. This could get
identified as a new CSR transition. If the write operation is
legal, the processor continues the execution of the program and
eventually overwrites the CSR with the updated status. Overall,
the type of transitions that occur from writes to status CSRs
do not affect the architectural state of the processor. Thus,
ProcessorFuzz filters out transitions that occur from explicit
writes to status CSRs.
Grouping Transitions. Next, the TU groups the transitions to
reduce the state space. ProcessorFuzz provides the flexibility
to customize the CSR-transition coverage metric to be suitable
for verifying different Architectural Units (AUs) individually.
Specifically, ProcessorFuzz allows a designer to group CSR
transitions of AUs, thereby considering them as independent
events. Grouping transitions improves the exploration of CSR
transitions within each group. As a result, the fuzzer is able to
generate tests targeted towards individual AUs and verify them
thoroughly. This is a useful feature for a verification engineer
as AUs in a processor can be individually verified as an initial
step of verification. For example, privileged and unprivileged
architectures in a RISC-V processor can be verified individually
by grouping transitions as shown in Figure 4. Identifying and
fixing the bugs in each AU before fuzzing the processor as a
whole can reduce the overall verification effort.
Transition Map ProcessorFuzz maintains a transition map to
store CSR-transitions. Each transition is stored in the map
as a tuple: (Im, S0, S1) where Im is the mnemonic of the
instruction whose execution resulted in the CSR transition. S0

and S1 are CSR values before and after the transition as defined
in subsection III-C. Revisiting the same example given in
subsection III-C, the unprivileged CSR-transition in lines 3 and
4 in Figure 4 can be represented as (fdiv.s, 0000, 0003). We in-
clude instruction mnemonic because the same transition can be
triggered by different instructions. For example, both floating-
point division and floating-point square-root instructions can
trigger the same transition in fflags CSR in RISC-V ISA due
to invalid operations. Nevertheless, only the invalid operation
of floating-point division instruction might contain a bug. Only
the mnemonic of the instructions is included to ignore repetitive
transitions that get triggered by different operands of the same
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TABLE I: CSR selection for RISC-V ISA implementation of ProcessorFuzz along with the criteria that was used to select them.
Here, C1 and C2 correspond to two criteria that we describe in Section III-C3.

CSR Group CSR Description Criteria
mstatus.xIE Controls the global interrupt enable bit for privilege x, x = {M, S, U} C2
mstatus.xPIE Holds the value of interrupt-enable bit active prior to the trap for privilege mode x C1
mstatus.xPP Holds the previous privilege mode active prior to a trap taken to privilege mode x C1
mstatus.XS Contains the state of any additional user-mode extensions C1
mstatus.FS Contains the state of the floating-point unit C1
mstatus.MPRV Controls the privilege mode in which the memory operations are performed C2
mstatus.SUM Controls the permission for accessing user memory from supervisor mode C2
mstatus.MXR Controls the privilege with which loads access virtual memory C2
mstatus.TVM Controls the ability to edit virtual-memory configuration from supervisor mode C2
mstatus.TW Controls the privilege modes that wait for interrupt (WFI) is allowed to execute C2
mstatus.TSR Provides the ability to trigger a trap when SRET instruction is executed in supervisor mode C2
mstatus.xXL Controls the width of an integer register for privilege mode x, x = {S, U} C2
mstatus.SD Indicate the combined state of mstatus.FS and mstatus.XS for context switches C1
{m,s}cause Contains the trap cause when a trap is taken in to machine or supervisor mode C1
medeleg Decides what type of exceptions are delegated to supervisor mode from machine mode C2

Privileged

{m,s}counteren Controls the availability of the hardware performance-monitoring counters for supervisor or user mode C2
frm Controls the dynamic rounding mode for floating-point operations C2Unprivileged fflags Holds the accrued exceptions from the floating-point operations C1

TABLE II: CSRs not monitored by ProcessorFuzz along with the reason for exclusion.

Category CSR Description Reason for
Exclusion

Privileged

misa Reports the CPU capabilities of a hart

Holds a constant
value during testing

mhartid Contains the integer ID of the hardware thread running the code
{m,s}tvec Contains the trap handler base address and vector configuration for machine or supervisor mode
satp Controls supervisor-mode address translation and protection

PMP pmpcfg Contains the physical memory protection configuration
pmpaddr Contains the physical memory protection addresses

Interrupt

{m,s}ip Reports pending interrupts in machine or supervisor mode

Not supported by the testing
infrastructure (e.g., RISC-V
ISA vector extension is not
supported and relevant CSRs
are excluded.)

{m,s}ie Control what interrupts are enabled in machine or supervisor mode
mideleg Decides what type of interrupts are delegated from machine mode to supervisor mode

Debug
Extension

dcsr Contains the configuration and status of debug extension
dpc Holds the program counter of the next instruction to be executed before entering debug mode
dscratch Optional scratch register that holds temporary values
tselect Control which trigger is accessible through the other trigger registers
tdata1-3 Holds trigger-specific data

Vector
Extension

vstart Holds the index of the first element to be executed by a vector instruction
vxsat Holds the saturation flag for fixed-point operations
vxrm Controls the rounding mode used in the vector extension

HPC

mcountinhibit Controls which hardware performance-monitoring counters are allowed to increment

Contains information to
assist designers during
analysis of a hardware bug
rather than revealing the
fundamental issue

cycle Holds the elapsed cycle count of the CPU
instret Holds the number of retired instruction count
hpmevent Hardware performance-monitoring event selector
hpmcounter Performance-monitoring counter of the event selected by hpmevent

Privileged

{m,s}tval Hold the exception-specific information when a trap is taken to machine or supervisor mode
mscratch Holds a pointer to the machine mode context space while the hart executes in lower privilege
{m,s}epc Contains the PC of an instruction that caused an exception for machine or supervisor mode
sscratch Holds a pointer to the supervisor mode context space while the hart executes in user mode

instruction. Once tuples are created, the map is queried to check
whether the detected transition is new or a duplicate. Tuples
that are identified to contain new transitions are added to the
map while marking the current test input as interesting. The
transition map is empty at the beginning of a fuzzing session
and maintained throughout the session.

E. RTL Simulation and Trace Comparison

If the TU determines that the current input results in a unique
CSR transition, ProcessorFuzz launches the RTL simulation
and generates the extended RTL trace log. ProcessorFuzz then
compares the extended RTL trace log with the extended ISA
trace log. Any difference between these logs signifies a poten-
tial bug in the processor design and needs to be investigated
further by a verification engineer. In case the input does not
result in a unique transition, ProcessorFuzz discards the input
and proceeds to the next fuzzing iteration.

IV. EVALUATION

In this section, we evaluate the effectiveness of Processor-
Fuzz using real-world processor designs.

A. Evaluation Setup

1) Implementation Details: ProcessorFuzz has two main
implementation steps; generation of an extended trace log using
the ISA simulator and building the TU (see Figure 3). For
the former, we extended Spike [53] open-source ISA simulator
to store the values of monitored CSRs (see Table I). The
instrumentation overhead of Spike is 0.4% in terms of lines
of C++ code, while the runtime overhead is 0.15%. For the
RTL simulation of all processor designs, we used Verilator [52],
an open-source RTL simulator. We used the same mutation
engine (see Figure 3) as provided by DIFUZZRTL’s open-
source repository. Using the same engine is important since
our goal is to compare two coverage feedback mechanisms (i.e.,
register coverage and CSR-transition coverage) rather than in-
put generation mechanisms. We separated transitions belonging
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to frm and fflags to separate floating-point operations from
the rest of the CSRs.

2) Processor Designs: We use three real-world open-source
RISC-V processors. Rocket Core is a Chisel [3] HDL-based
open-source, general-purpose, in-order RISC-V processor core
that can be generated using the Rocket Chip SoC Generator
framework [2]. We used Spike [53] as a reference model to
verify the correctness during fuzzing. The commit version of
the Rocket core that we used is 148d5d2. BOOM Core [9]
is an out-of-order, superscalar RISC-V processor core. It can
also be generated from the same Rocket Chip SoC Generator
framework [2] and is also designed in Chisel HDL. We used
Spike ISA simulator to verify the correctness during fuzzing.
The commit version of the BOOM core that we used is
148d5d2. BlackParrot Core [48] is an open-source 64-bit
RISC-V core, designed in the industry-standard SystemVerilog
HDL. BlackParrot is silicon-validated and is in active develop-
ment. We used Dromajo [56] as a reference model to expose
the bugs in BlackParrot (commit bc3b48b).

3) Settings: We compared ProcessorFuzz with two
different settings of DIFUZZRTL. The first setting is
no-cov-difuzzrtl where DIFUZZRTL fuzzing
framework is used without any coverage guidance (i.e.,
as a blackbox fuzzer). For all the cores that we evaluated,
we successfully used this setting as a comparison point. The
second setting is reg-cov-difuzzrtl where DIFUZZRTL
fuzzing framework relies on register coverage as a guidance
mechanism. While this setting is applicable to Rocket and
BOOM Cores, it is not the case for BlackParrot Core. This
is because DIFUZZRTL’s register coverage passes do not
support SystemVerilog. They are tailored for FIRRTL [27], an
intermediate representation (IR) used by Chisel HDL, which is
used to design Rocket and BOOM cores. We tried to convert
SystemVerilog to FIRRTL using an open-source tool (i.e.,
Yosys [62]), and apply DIFUZZRTL’s register coverage passes.
However, we observed several issues during this conversion
due to the limited support for SystemVerilog to FIRTTL
conversion and thus failed to instrument BlackParrot. In our
experiments, we used DIFUZZRTL as the sole comparison
point since it shows clear benefits over previous processor
fuzzing frameworks as well as its open-source nature. Also,
for each setting, we reported Time-to-Exposures (TTE) which
is defined as the total elapsed time from the starting of the
fuzzing session until the bug is exposed.

4) Infrastructure: All the experiments based on ISA and
the RTL simulations were conducted on server nodes with
Intel®Xeon®E5-2670 CPUs and CentOS Linux 7 as the op-
erating system. We fuzzed each processor design 10 times for
each setting and allocated 48 hours (2 days) of time limit for
each fuzzing instance. For each fuzzing instance, we dedicated
two cores and 8GB of memory. In total, it took 4320 CPU
hours to conduct all the experiments.

B. Ground-truth Bugs

As discussed by prior works [31], [39], the bug-finding
capability of a fuzzer is the ultimate litmus test for a fuzzer.

While there exist several fuzzing benchmarks for software pro-
grams [22], [36], this is not the case for processors. Therefore,
we relied on a set of bugs (in total six bugs) previously reported
by DIFUZZRTL for BOOM processor to evaluate the bug-
finding capability of ProcessorFuzz and perform a head-to-
head comparison with DIFUZZRTL. Overall, our evaluation
aims to demonstrate that ProcessorFuzz can guide the fuzzer
efficiently to discover ground-truth bugs thanks to the CSR-
transition feedback obtained using the ISA simulation.

In Table III, we report the TTE of bugs in seconds for three
different settings in 2nd-4th columns; no-cov-difuzzrtl,
reg-cov-difuzzrtl, and ProcessorFuzz selected con-
figuration. selected configuration of ProcessorFuzz uses the
CSRs in Table I for transition extraction based on the criteria
that we detailed in Section III-C3. We also provide the achieved
speedups by ProcessorFuzz over no-cov-difuzzrtl, and
reg-cov-difuzzrtl. Besides selected, we provide re-
sults for two more different configurations of ProcessorFuzz
in column 5th-6th; fp-csr, and all-csr. These configu-
rations differ in the CSRs that ProcessorFuzz monitors dur-
ing fuzzing. Specifically, all-csr configuration monitors
all implemented CSRs in the BOOM core. Here, by using
all-csr configuration, we aim to present that Processor-
Fuzz can be effectively guided towards bugs by eliminating
certain CSRs that do not assist fuzzing towards exploring bugs
(e.g., instret that repeatedly changes after an instruction
retires). Finally, fp-csr configuration uses only the floating-
point CSRs (unprivileged CSRs in Table I). The aim of
this experiment is to show that ProcessorFuzz can focus on
certain parts of processors by selecting a subset of CSRs
(e.g., floating point unit). Overall, ProcessorFuzz selected
configuration and DIFUZZRTL discovered five out of six
bugs reported in the DIFUZZRTL within the fuzzing time
limit in our experiments. Unfortunately, we could not detect
#504 with any of the settings. In summary, ProcessorFuzz
(selected) achieved, on average, 1.21× (up to 2.1×) and
1.23× (up to 2.32×) speedups over no-cov-difuzzrtl and
reg-cov-difuzzrtl, respectively. no-cov-difuzzrtl
performed slightly better than regcov-difuzzrtl.

We included fp-csr configuration to demonstrate the Pro-
cessorFuzz’s ability to change the scope of verification by
changing the CSR selection. fp-csr detected the bugs in the
floating-point unit (issues #492, #493 and #503) 2.08× faster
compared to the selected configuration while showing a
slowdown in detecting other bugs.

We also show the effect of CSR selection on TTE of the
bugs through all-csr configuration. all-csr configuration
failed to detect two of the bugs within the allocated fuzzing
time. Moreover, selected is significantly faster (i.e., 16.49×
on average) than all-csr in detecting bugs.

To understand the performance of ProcessorFuzz and DI-
FUZZRTL for different bugs, we further study the relationship
among register coverage, CSR-transition coverage, and bug-
finding times. Specifically, in Figure 6a, we show the mea-
sured register coverage progress for different settings of DI-
FUZZRTL and ProcessorFuzz. Although ProcessorFuzz covers
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TABLE III: The speedup achieved by selected ProcessorFuzz configuration over no-cov-difuzzrtl, and reg-cov-difuzzrtl for
the ground-truth bugs in the BOOM processor. We also report speedup of fp-csr and all-csr ProcessorFuzz configurations
over selected ProcessorFuzz configuration. The runtime is set as 48 hours (172800 seconds) for bugs that could not be found.

no-cov-
difuzzrtl

reg-cov-
difuzzrtl

ProcessorFuzz
(selected)

ProcessorFuzz
(fp-csr)

ProcessorFuzz
(all-csr)

Issue
No Time (s) Time (s)

Speedup
(over

no-cov)
Time (s)

Speedup
(over

no-cov)

Speedup
(over

reg-cov)
Time (s)

Speedup
(over

selected)
Time (s)

Speedup
(over

selected)

#458 104.3 70.3 1.48 54 1.93 1.3 151324.8 0.0 172800 NA
#454 32883.3 45322 0.73 25020 1.31 1.81 119886.2 0.2 39523.3 0.63
#492 2047.2 4238.9 0.48 1821.2 1.12 2.32 1221.8 1.49 172800 NA
#493 585.4 494.9 1.18 278.7 2.1 1.77 170.1 1.63 526.6 0.52
#503 1463.7 1011.1 1.44 2795.9 0.52 0.36 757.6 3.69 62246.8 0.04
#504 172800 172800 NA 172800 NA NA 172800 NA 172800 NA

Geo. 3182.9 3245.1 0.98 2630.7 1.21 1.23 8890.2 0.29 43402.2 0.06
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Fig. 6: Coverage details for different settings.
less number of states (i.e., achieves lower register coverage)
during fuzzing, it was still able to discover bugs faster. For
instance, ProcessorFuzz triggered the most challenging bug
based on the TTE (i.e., #454) after exploring 303K states while
no-cov-difuzzrtl and reg-cov-difuzzrtl triggered
that bug after exploring 364K and 354K states, respectively.
This particular bug shows that higher register state coverage
does not necessarily translate to a faster bug discovery. Indeed,
an increase in coverage due to value changes in datapath
registers can mislead the fuzzer since inputs with similar
characteristics (the multiplication example in Section II-C) are
repeatedly used by the fuzzer to generate a new set of inputs.

In Figure 6b, we also show the total number of test inputs
that lead to a coverage increase, i.e. ‘interesting test inputs’,
and the total number of inputs generated by the mutation
engine for the two settings of DIFUZZRTL and ProcessorFuzz.
For no-cov-difuzzrtl and reg-cov-difuzzrtl, we
use the register coverage metric, the same metric used in
DIFUZZRTL, to realize if a test input increases coverage.
For ProcessorFuzz, we use the CSR-transition coverage metric
to detect inputs that resulted in a coverage increase. The
results provide an important takeaway. Although ProcessorFuzz
generates significantly more inputs than other approaches, it is

very selective when categorizing a test input as ‘interesting’.
Consequently, ProcessorFuzz identified only 33% of the gener-
ated test inputs as interesting. Moreover, ProcessorFuzz could
expose the bugs faster although it used the least number of
test inputs for the RTL simulation. Note that ProcessorFuzz
launched the RTL simulation only with interesting inputs (i.e.,
curved dotted red line) and discarded any other generated input.
Using the fast ISA simulation enabled ProcessorFuzz to quickly
eliminate inputs that do not result in a new FSM state and spend
more time on inputs that explore new FSM states.

C. Newly Discovered Bugs

In Table IV, we document the various new bugs discovered
by ProcessorFuzz in the selected processors mentioned earlier
and in the ISA simulator used as a reference model. Here,
we provide detailed descriptions of three bugs chosen from
different processors and reference model. The details of the re-
maining bugs can be found in respective processor repositories.

1) Bug Descriptions: Bug 6. Any write attempt to the zero
register (i.e., x0) must be ignored according to the RISC-V
ISA. However, in BlackParrot, we detected that the x0 register
is read as a non-zero value if one of the preceding division
instructions that writes to x0 is still in the pipeline. Further
analysis revealed that this discrepancy is due to bypassing the
result of division operation to the following instruction even
when the destination register of a division operation is x0.
ProcessorFuzz was able to identify this bug because a test input
that has this scenario caused a CSR transition in fflags due
to division by zero. An attacker can use this bug to obfuscate
the behavior of malware. Specifically, malware can jump to an
address computed by an instruction that uses x0.
Bug 7. According to RISC-V privileged specification, the effec-
tive privilege mode for implicit page table accesses should be
supervisor mode. However, we observed that Dromajo accesses
page tables in user mode privilege level when executing user-
mode programs. Further analysis revealed that Dromajo also
carries out Physical Memory Protection (PMP) checks in user
mode when no PMP entries are set, violating the RISC-V ISA
privileged specification in two counts.
Bug 8. In a multi-level page table implementation, the accessed
(A), dirty (D), and user-mode (U) bits of a non-leaf page table
entry (PTE) are reserved for future use and should be cleared.
If these bits are set in a non-leaf PTE, the processor must raise
an instruction page fault when accessing the PTE according to
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TABLE IV: Brief description of bugs discovered by ProcessorFuzz, and their current status, in various processor cores.

Bug Core /
Simulator Brief Description of the Bug Status (Issue No)

1 BlackParrot Non-boxed single-precision floating point values are not interpreted as NaNs Confirmed (#971)
2 BlackParrot Read-after-Write dependencies on fcsr.fflags are not satisfied. Fixed (#994)
3 BlackParrot When mstatus.FS is not set and the fcsr is written, FS is unexpectedly updated. Fixed (#969)
4 BlackParrot The 2 low-bits of sepc CSR are not write-insensitive. Fixed (#970)
5 BlackParrot No exception raised when writing certain read-only CSRs. Fixed (#967)
6 BlackParrot Reading zero register, following specific instruction sequences, return unexpected non-

zero values
Fixed (#832)

7 Dromajo PMP checks are performed, and raise exceptions upon encountering violations, even
with no PMP entries set.

Confirmed (#46)

8 Rocket &
BOOM Instruction page fault not raised when accessing non-leaf PTEs with certain unspecified

page attributes.
Fixed (#2905, #570)

9 BOOM mstatus.FS is gratuitously set to dirty. Confirmed (#969)

the RISC-V ISA. We discovered that Rocket and BOOM cores
do not raise instruction page fault when software attempts to
access a PTE with any of A, D, or U bits set. This bug is similar
to CWE-1209 [43] where failure to disable reserved bits allows
attackers to compromise the hardware state.

2) Timing Results: Table V provides the TTEs for six
newly identified bugs (Bug 1-6) in BlackParrot. We did not
include Bug 7-9 since they were easily detected in all the
settings. We were only able to compare ProcessorFuzz with
no-cov-difuzzrtl. As detailed in Section IV-A3, we
could not instrument BlackParrot with register coverage since
DIFUZZRTL lacks support for SystemVerilog. ProcessorFuzz
does not require any instrumentation on the RTL design, there-
fore, could successfully guide the fuzzer with CSR-transition
coverage to expose bugs. Overall, ProcessorFuzz achieved
1.57× speedup, on average, over no-cov-difuzzrtl. Note
that only ProcessorFuzz was able to detect Bug 6 from Ta-
ble IV. Similar to the experiment that we conducted in the
BOOM processor using the ground-truth bugs, selected
configuration of ProcessorFuzz performed significantly better
compared to all-csr configuration (i.e., 15.61× faster).
Moreover, fp-csr configuration identified floating-point re-
lated bugs fairly faster (e.g., Bug 3) compared to other type of
bugs (e.g., Bug 4 that focuses on sepc CSR).

V. RELATED WORK

We first present traditional methods in hardware verifica-
tion. Then, we explain fuzzing-based hardware verification
approaches and how ProcessorFuzz differs.

A. Traditional Hardware Verification

Random instruction generators [15], [20], [21], [23], [34]
have been commonly used in processor verification since they
require limited human expertise and are scalable to large RTL
designs. The lack of coverage guidance in these tools leads
to the generation of the repetitive inputs that test the same
processor functionalities, thereby decreasing the chances of
finding bugs [24], [33]. A verification engineer can target the
uncovered RTL regions by adjusting the constraints that control
the random test generator. However, this method significantly
increases engineering effort, and therefore, slows down the
verification process. To overcome this problem, researchers
proposed several coverage-directed test generation mecha-
nisms [4], [14], [16], [47], [54], [55], [59] that automatically

direct the next round of test generation to target the uncovered
parts of RTL. Unfortunately, these works are generally DUT-
specific which hinders their general applicability.

Formal verification methods (e.g., symbolic execution and
model checking) are also widely used in hardware verification
[6], [10], [46]. These methods use mathematical reasoning to
prove that a hardware design conforms to its specification.
Unfortunately, formal verification methods have a well-known
state explosion problem, and therefore, do not scale well for
complex RTL designs such as a processor [12].

B. Hardware Fuzzing

In Table VI, we provide a high-level overview of all fuzzing-
based RTL verification approaches. For each approach, we
include the input format, the coverage metric used to guide
the fuzzer, and the method to identify bugs.

RFUZZ [33] proposes a new metric, the multiplexer toggle
coverage. RFUZZ monitors all the multiplexers in the RTL de-
sign. It retains an input for further mutations if the input toggles
a previously uncovered multiplexer selection signal. A follow-
up work by Li et al. [35] enhances RFUZZ with symbolic
simulation. Both RFUZZ and Li et al. are highly coupled to
Chisel HDL which limits the applicability of the approach [49].
Additionally, monitoring multiplexers in complex designs intro-
duces excessive performance overhead [24]. ProcessorFuzz is
agnostic to HDL, which makes it both practical and efficient.

Trippel et al. [57] translate hardware designs to software
models and fuzzes those models. This way, available coverage
metrics used by software fuzzers (e.g., basic block and edge)
can be used for fuzzing hardware as well. However, this method
of converting hardware designs to software models introduces
additional challenges such as proving the equivalency between
hardware design and software model [49].

TheHuzz [30] relies on a variety of coverage metrics ex-
tracted using industrial-standard tools such as Cadence [7]
and ModelSim [51]. TheHuzz profiles individual instructions
to associate with relevant mutation strategies while generating
new set of inputs. Unlike DIFUZZRTL or ProcessorFuzz,
TheHuzz does not propose a new coverage metric. TheHuzz
relies on several coverage metrics used in software testing
(i.e., statement, branch, line, and expression). As discussed by
prior works [24], [55], these metrics are not sufficient metrics
to verify a processor. Moreover, it is not clear how registers
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TABLE V: The speedup of ProcessorFuzz over no-cov-difuzzrtl, and reg-cov-difuzzrtl for the discovered bugs in the BlackParrot
processor. We also report speedup of fp-csr and all-csr ProcessorFuzz configurations over selected ProcessorFuzz
configuration. We state the maximum allowed runtime of 48 hours (172800 seconds) for bugs that could not be found.

no-cov-difuzzrtl ProcessorFuzz (selected) ProcessorFuzz (fp-csr) ProcessorFuzz (all-csr)

Bug Time (s) Time (s) Speedup
(over no-cov) Time (s) Speedup

(over no-cov)
Speedup

(over selected) Time (s) Speedup
(over no-cov)

Speedup
(over selected)

1 464.9 230.2 2.02 430.2 1.08 0.54 1608.7 0.29 0.14
2 95695 57441.3 1.67 100804.9 0.95 0.57 122076 0.78 0.47
3 1520.1 1474.5 1.03 921.8 1.65 1.60 172800 NA NA
4 585.3 308 1.90 558.8 1.05 0.55 13560.4 0.04 0.02
5 476.1 242.1 1.97 239.7 1.99 1.01 39150.9 0.01 0.01
6 172800 147942.3 1.17 148655 1.16 1.00 172800 NA NA

Geo. 3849.9 2447.7 1.57 3044.4 1.26 0.8 38212.2 0.10 0.06

TABLE VI: Existing RTL Fuzzers.

Input Format Coverage Metric Evaluated RTL Designs Bug Discovery Method

RFUZZ [33] A Series of Bits Mux Toggle Peripherals,
RISC-V Processors (Sodor 1-3-5) Assertion

Li et. al [35] A Series of Bits Full Mux Toggle Custom RISC-V Processor, OpenCore 1200 Assertion

DIFUZZRTL [24] Assembly Register Coverage RISC-V Processors
(BOOM, Mork1x, Rocket Chip) Golden Model

DirectFuzz [8] A Series of Bits Mux Toggle Same as RFUZZ Assertion
Trippel et al. [57] Byte Sequence Edge Coverage RISC-V IP Cores Golden Model, Assertion

TheHuzz [30] Assembly Branch, Line, Statement,
Expression, DFF Toggle, FSM

RISC-V Processors ( Rocket Chip, CVA6),
mor1kx, OpenCore 1200 Golden Model

HYPERFUZZER [45] A Series of Bits High-Level Custom SoC Property Check

Logic Fuzzer [29] A Series of Bits,
Random Data N/A RISC-V Processors

(BlackParrot, BOOM, CVA6) Golden Model

ProcessorFuzz (this work) Assembly Control Path Register,
ISA-Sim Transition

RISC-V processors
(BOOM, BlackParrot, Rocket Chip) Golden Model

that control FSM coverage are identified as the industrial-
tools are not open-sourced. We could not quantatively compare
ProcessorFuzz with TheHuzz as TheHuzz is not open sourced.

The common goal of the aforementioned fuzzing works is to
maximize coverage of an RTL design, thereby discovering bugs
across the entire RTL design. Researchers have also proposed
fuzzing frameworks for achieving alternate verification goals.
For instance, DirectFuzz [8] adapts the notion of directed
greybox fuzzing and applies it to the RTL verification. The
goal of DirectFuzz is to cover certain specific RTL regions
with a targeted fuzzing approach. Here, the motivation is to
dedicate more fuzzing time to the RTL components that need
to undergo thorough testing. HYPERFUZZER [45] introduces
a new grammar that represents the hardware security proper-
ties. During fuzzing, HYPERFUZZER checks if any of the
fuzzer-generated inputs violates a security property. Defining
the security properties manually can be the most accurate
approach if their correctness are verified. However, defining
properties requires human expertise which is error-prone. Logic
Fuzzer [29] randomizes control signals and states of a DUT
without compromising the functional correctness of the DUT.
Logic Fuzzer needs to be provided with fuzzing targets (e.g.,
congestible points in an RTL design), and therefore requires
domain expertise. INTROSPECTRE [17] and Osiris [60] use
blackbox fuzzing approach to discover microarchitectural side
channels (e.g., Meltdown [37] and Spectre [32]) in processors.

VI. DISCUSSION AND LIMITATIONS

Other ISAs. In this work, we demonstrated the capability of
ProcessorFuzz using the RISC-V ISA. However, CSRs are not
only specific to the RISC-V architecture and defined as part of
many other ISAs including x86. Therefore, ProcessorFuzz is

not limited to the RISC-V-based processors and can be used in
processors based on other ISAs.
Unintended RTL Transitions. ProcessorFuzz uses ISA simu-
lation as part of a feedback mechanism since it is faster and
agnostic to the HDL. ProcessorFuzz does not use an input for
RTL simulation if the input lacks a unique transition in its ISA
simulation trace. One limitation of this design choice is that
ProcessorFuzz can potentially miss certain bugs that follow the
given scenario. If a test input would result in an unintended
transition in RTL simulation but the same test input does not
cause any unique transition in ISA simulation, such a test input
will be discarded. Hence, the bug will not be identified.

VII. CONCLUSION

This work presents ProcessorFuzz, a processor fuzzer guided
by a novel CSR-transition coverage feedback obtained from
ISA simulation. ProcessorFuzz demonstrates that monitoring
CSR transitions can effectively guide fuzzing towards buggy
processor states. Moreover, using ISA simulation instead of
RTL simulation can quickly eliminate inputs that result in the
same coverage, thereby helping the fuzzer to test as many
qualitatively different inputs as possible. Our experimental
results discovered eight new bugs in established, real-world,
RISC-V processors, and one new bug in a reference model.
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