
SIGFuzz: A Framework for Discovering
Microarchitectural Timing Side Channels

Chathura Rajapaksha, Leila Delshadtehrani, Manuel Egele, Ajay Joshi
Department of ECE, Boston University, {chath, delshad, megele, joshi}@bu.edu

Abstract—Timing side channels can be inadvertently introduced
into processor microarchitecture during the design process, mainly
due to optimizations carried out to improve processor performance.
These timing side channels have been used in various attacks
including transient execution attacks on recent commodity proces-
sors. Hence, we need a tool to detect timing side channels during
the design process. This paper presents SIGFuzz, a fuzzing-based
framework for detecting microarchitectural timing side channels. A
designer can use SIGFuzz to detect side channels early in the design
flow and mitigate potential vulnerabilities associated with them.
SIGFuzz generates a cycle-accurate microarchitectural trace for a
program that executes on the target processor, it then uses two trace
properties to identify side channels that would have been formed
by the program. These two trace properties evaluate the effect of
each instruction in the program, on the timing of its prior and later
instructions, respectively. SIGFuzz also uses a statistical distribution
of execution delays of instructions with the same mnemonic to
flag potential side channels that manifest with different operands
of an instruction. Furthermore, SIGFuzz automatically groups the
detected side channels based on the microarchitectural activity trace
(i.e. signature) of the instruction that triggered it. We evaluated
SIGFuzz on two real-world open-source processor designs: Rocket
and BOOM, and found three new side channels and two known
side channels. We present a novel Spectre-style attack on BOOM
based on one of the newly detected side channel.

Index Terms—side channels, microarchitecture, hardware
fuzzing

I. INTRODUCTION

Microarchitectural side channels have been threatening the
security of computing systems for decades [1]. The recent
discovery of side-channel based transient-execution attacks
such as Spectre [2] and Meltdown [3] has led to a flurry of new
side-channel based attacks [4]. These microarchitectural side
channels are often introduced due to power, performance and/or
area optimizations. For example, Shin et al. [5] showed that
data prefetching, a performance optimization technique used
in modern processors, introduces side channels that attackers
can exploit. Therefore, identifying side channels early in the
design flow and mitigating any vulnerabilities associated with
them is vital to ensure processor security.

Typically, side channels have been discovered through
manual inspection and experiments. For example, Fogh et al.
[6] discovered side channels related to rdseed and pause
instructions in Intel CPUs through the processor documentation
and experiments. However, manual inspection is not a practical
method to identify side channels at design time as it can be
quite cumbersome. Moreover, manually checking the interplay
between all instruction combinations and their side effects is
practically impossible due to the limited ‘time to market’ for
any processor. Hence, there is a pressing need for a tool that
can detect various types of side channels with reduced manual
effort during the design stage of processors.

Several automation methods have been proposed in recent
work for detecting side channels in processors. These include
dynamic verification (fuzzing) methods [7] as well as formal
verification methods [8]. Fuzzing is a popular software testing
method [9], which involves running a target software with
random or mutated inputs to find bugs. Fuzzing has been
recently adapted for hardware testing [7], [10]–[13].

Osiris [7] introduced an automated method to find
microarchitectural side channels using a generic three-step
model. Covert Shotgun [14] and ABSynthe [15] automated the
detection of contention-based side channels that occur when
instructions are executed in hyper threads (two logical cores)
simultaneously. UPEC [8] introduced an exhaustive formal
verification method for detecting side channels in the context
of transient execution attacks. AutoCAT [16] introduced a
reinforcement learning based framework for automatically
generating cache-timing attack sequences for any given cache.

Unfortunately, these prior work either can detect a specific
type of side channels or are limited by their applicability. Osiris
is limited to detecting side channels formed by three instructions
that follow their model, which limits the types of side channels it
can detect. Methods proposed by Covert Shotgun and ABSynthe
are unique for detecting contention-based side channels and
hence, they are not applicable for other classes of side channels
(e.g., single core timing side channels). Adapting the UPEC
approach involves considerable manual effort for building
models and proving properties (e.g.-Microequivalence [8]) for
each target processor, which hinders its applicability. AutoCAT
specializes in detecting cache timing channels, which limits its
capability to find side channels in other microarchitectural units.

In this paper, we propose SIGFuzz1 , a generic fuzzing-based
framework for discovering various types of microarchitectural
timing side channels. SIGFuzz executes random or mutated
assembly tests on the target processor and evaluates the effect of
each instruction on the execution time of other instructions in the
test to detect timing side channels. Our generated tests contain
>100 randomly ordered instructions with random operands (as
opposed to just three instructions with constant operands in
Osiris). This enables SIGFuzz to detect side channels formed
with more than three instructions with different operand values.

SIGFuzz generates cycle-accurate microarchitectural traces2

of tests and checks if the traces satisfied/violated two trace
properties to determine whether any instruction in the test
triggered a side channel. These two trace properties state whether
the instruction in question affected the commit time of prior

1Available at https://github.com/bu-icsg/SIGFuzz
2A trace that represents the microarchitectural state of the processor in each

clock cycle.

and later instructions in the program, respectively. SIGFuzz also
determines a statistical distribution of delays of instructions with
the same mnemonic to flag potential timing side channels. More
details about this process are provided in Section III. Further-
more, SIGFuzz features an automated method to group similar
side channels, based on the mnemonic and the microarchitectural
activity trace, i.e., the signature of the instruction that triggered
it. At the end of a fuzzing session, SIGFuzz automatically
generates a report of potential side channels that were detected.

We evaluated SIGFuzz by running it on two commonly
used RISC-V open-source processors, namely Rocket [17] and
BOOM [18]. SIGFuzz found both known and new side channels
in both processors. Additionally, we present a novel Spectre-
style attack on BOOM based on one of our newly detected side
channels. In summary, we make the following contributions:

1) We present a generic approach for discovering
microarchitectural timing side channels formed by a
given program. The generic nature of our approach
enables us to discover side channels in a broader scope
compared to prior work. Based on this approach, we
develop SIGFuzz, a fuzzing framework for discovering
microarchitectural timing side channels.

2) We discovered three new side channels in two open-source
RISC-V processors, Rocket and BOOM. Two of the
newly detected side channels are common to both Rocket
and BOOM, while the third one is unique to BOOM.

3) We present a novel Spectre-style attack based on a newly
detected side channel.

II. RELATED WORK

There have been several recent work that automate the
detection of side channels. Osiris [7] introduces an automated
method to discover microarchitectural side channels using
a generic three-step model, which iteratively checks all
three-instruction combinations in an ISA while keeping the
operands constant. Covert Shotgun [14] and ABSynthe [15]
automate the detection of contention-based side channels across
two hyperthreads. Covert Shotgun runs a set of hand-picked
instructions on two hyperthreads of a CPU simultaneously and
measures any observable contention from one instruction on the
other. ABSynthe improves on Covert Shotgun by automatically
finding the sequence of instructions that maximize the infor-
mation leakage for a given processor and using it to synthesize
cross-thread attacks. AutoCAT [16] introduces a reinforcement
learning based framework for automatically generating cache-
timing attack sequences for any given cache. UPEC [8] proposes
a formal verification-based method to exhaustively detect
transient execution side channels in processors at design time.

The aforementioned approaches are, however, either limited
to discovering a specific type of side channels or limited in their
practical applicability. For example, Osiris is limited to detecting
side channels that are formed by three instructions with constant
operands. In contrast, SIGFuzz is capable of discovering side
channels formed by any generic instruction sequence with
any number of instructions and different operands. Similarly,
AutoCAT is limited to detecting timing channels in the cache

while SIGFuzz introduces a more generic method that can
discover timing side channels formed in any microarchitectural
unit of a processor. The methods proposed by Covert Shotgun
and ABSynthe are not applicable beyond contention-based side
channels between hyperthreads. In contrast, SIGFuzz detects
timing-based side channels that manifest in a single hardware
thread. Unlike SIGFuzz, UPEC guarantees exhaustiveness when
detecting transient execution side channels. However, SIGFuzz
can be applied to a target with less manual effort without
developing models (microequivalence) or customization, which
is required for UPEC.

Several other fuzzing methods have been introduced recently
for finding bugs in processors [10]–[12]. These methods use
an ISA simulator as a golden model, where any mismatch with
the golden model is considered a potential bug. However, ISA
simulators only model the architectural behavior, leaving the
microarchitectural behaviors of the target processor unchecked.
Therefore, these methods are not capable of detecting microar-
chitectural side channels and are not comparable with SIGFuzz.

III. SIGFUZZ

Figure 1 shows the overview of the SIGFuzz fuzzing
framework. At a high level, SIGFuzz uses a coverage-guided
fuzzing engine to generate tests. It then mutates these tests and
executes them on the target processor. Subsequently, SIGFuzz
relies on two trace properties to identify any side channels that
could form by the tests. SIGFuzz then extracts the signature
of each committed instruction and stores it in a bin database.
These signatures are then post-processed to detect potential
timing side channels. In the rest of this section, we first discuss
the motivation for the design of SIGFuzz, then discuss the
different steps of SIGFuzz in detail.

A. Motivation

Typically, a group of instructions is required to form a side
channel. If any instruction from the group affects the execution
time of a prior or later instruction in the group, it indicates
the existence of a potential side channel
Example 1: In the contention-based side channel used in
the Spectre-STC [8] attack, arithmetic and logic instructions
cause additional delays in prior division instructions due to the
contention at the register file write port.
Example 2: In the Flush+Reload [19] cache side-channel,
flush instruction affects the timing of a later memory access
instruction that reloads the data.

Motivated by the above observations, we came up with two
trace properties to detect the two types of side channels shown
in examples 1 and 2. (Property 1 and 2 in III-B4). Furthermore,
identifying whether a particular instruction had any effect on
the timing of another instruction is challenging. To address
this challenge, we propose a differential method based on the
nop instruction. We claim that the effect of an instruction
(say K) on the timing of other instructions in the test can be
accurately identified by replacing the instruction K with a nop
and comparing the commit times of each instruction when
using K and when using nop in place of K.

Fuzzing
Engine

Mutated
Test

Generation

Evaluate
Trace

Properties

Detect Potential
Side Channels

RTL
Simulation

RTL
Simulation

Signature
Extraction and

Binning

...
add
lw
divu
...

...
add
nop
divu
...

...
add
lw
divu
...

Coverage Feedback

Bin
Database1 4 5

6

3

μTref

μTmut

Sx

211
x

Report

Report
Generation

Fig. 1. SIGFuzz framework: SIGFuzz generates cycle-accurate microarchitectural traces (µT ref and µTmut
x) for the reference test and a mutated test. These traces

are used to evaluate the trace properties, detect potential side channels and extract the signature (Sx) of the instruction in question (lw in the example shown in the
figure). Signatures and information about the detected side channels are stored in the bin database, from which a report is generated at the end of the fuzzing session.

Additionally, an instruction by itself can manifest as a side
channel depending on its operands.
Example 3: If a division instruction takes a longer time to
execute when the divisor is greater than the dividend compared
to its usual execution time, an attacker can exploit this timing
difference to leak information about the data processed by the
division operation (we demonstrate this in Section V).

With the goal of detecting this type of side channels, we define
a metric called commit time difference (CTD) that represents
the execution time of an instruction (see Section III-B4).

B. SIGFuzz Framework

1) Fuzzing Engine: The fuzzing engine generates random
assembly tests and passes them to the next step. It receives
coverage information for a test from step 3⃝. If a test increased
the coverage of the design, that test is marked as ‘interesting’
and kept for further mutations.

2) Mutated Test Generation: SIGFuzz takes a test provided
by the fuzzing engine and mutates it to create more tests. The
mutation involves replacing each instruction with a nop instruc-
tion, one at a time. We refer to the original test provided by the
fuzzing engine as reference test T ref and a test that SIGFuzz
generates by replacing the xth instruction as mutated test Tmut

x .
3) RTL Simulation and Microarchitectural Trace Generation

: SIGFuzz then executes the reference test and the mutated test
in the target processor through two separate RTL simulations.
These RTL simulations generate microarchitectural traces
of the tests (µT ref and µTmut

x). SIGFuzz generates these
traces from the RTL simulation of the target processor for
two purposes. First, to check violation of trace properties
and detect potential side channels formed by the tests, which
require a cycle-accurate commit trace. Second, to extract the
microarchitectural activity trace i.e. signature of an instruction,
which requires a mechanism to represent the microarchitectural
state of the processor at each clock cycle.

To satisfy the first need, we instrumented the RTL design
of the target processor to print commit and program counter
RTL signals in each clock cycle and included it in the
microarchitectural trace. The commit signal is set to 1 whenever
an instruction is committed. To satisfy the second need, SIGFuzz
uses regstate representation of an RTL module used in the
register-coverage metric introduced by DifuzzRTL [11]. Difuz-
zRTL identifies all control signals that drive the muxes in a mod-
ule in an RTL design of a processor and hashes them together to

1#0x800004a4:0x65e28,0x17d71,0xdeafc,...,0x188e9,0x20,0x1
1#0x800004a8:0x65e28,0x17d71,0x10b98,...,0x3c49e,0x30,0x1
0#0x800004a8:0x65e28,0x17d71,0x50adc,...,0xa45de,0x30,0x0
1#0x800004ac:0x65e28,0x17d71,0xaffb8,...,0xe3f28,0x20,0x1

Commit

Program
Counter

regstate values of
RTL modules

Fig. 2. Part of a microarchitectural trace generated by SIGFuzz. Each line in the
microarchitectural trace represents a clock cycle during the test execution in the
processor. The leftmost value in the trace is the commit signal, which indicates
whether the program counter in the same row is committed in that clock cycle.
The program counter located in the second column does not carry any meaning
if the commit signal is zero. Each comma-separated value after the “:” sign
represents the regstate value of an RTL module in the target processor.

 ...
add sp, s0, s1
lw a4, 0(s4)
divu s3, a2, a5
 ...

 ...
add sp, s0, s1
nop
divu s3, a2, a5
 ...

...
x-1
x
x+1
...

T ref T mut

...
tref

tref

tref

...

x-1

x

x+1

...
tmut

tmut

tmut

...

x-1

x

x+1

x

Fig. 3. A minimal example of a reference test (T ref) and a mutated test
generated from that (Tmut). x−1, x, x+1 represent the instruction number in
both tests. trefx−1, t

ref
x , trefx+1 and tmut

x−1 , t
mut
x , tmut

x+1 represent the time in clock
cycles when each instruction was committed in T ref and Tmut, respectively.

create regstate for that module. Therefore, regstate rep-
resents the microarchitectural state of an RTL module in a given
clock cycle. To enable regstate for all modules, we instru-
mented the RTL design of the processor with register-coverage
and used regstate values of each RTL module to generate a
microarchitectural activity in each clock cycle. Figure 2 shows
an example microarchitectural trace generated by SIGFuzz.

4) Evaluate Trace Properties: Using the differential method
mentioned in III-A, we define two trace properties to evaluate
the effect of one instruction on others. We use the example
tests shown in Figure 3 to describe these.
Property 1. This property checks whether an instruction x
affects the commit time of an earlier instruction in the test. It
can be formally expressed as follows:

∀n<x : trefn = tmut
n

where trefn and tmut
n correspond to the commit time of the nth

instruction in the reference test and the mutated test.
Property 2. This property checks whether an instruction x
affects the commit time of later instructions in the test. It can
be formally expressed as follows:

∀n>x : trefn −trefx = tmut
n −tmut

x

 ...
add sp, s0, s1
lw a4, 0(s4)
divu s3, a2, a5
 ...

 ...
add sp, s0, s1
nop
divu s3, a2, a5
 ...

μT ref μT mut

-
...
x-1
x
x+1
...

Sx

x

Fig. 4. Signature extraction process for instruction x (lw a4,0(s4) in the
figure). The signature is extracted from the bitwise subtraction operation between
the microarchitectural trace of the reference test (µTref) and that of the mutated
test (µTx). x−1, x, x+1 represent the instruction numbers in both tests.

With the goal of detecting side channels that manifest in a
single instruction (Example 3 in III-A), we define a new metric
CTD, which represents the difference in the commit time of
xth instruction in Tref and the nop instruction (that replaced
the xth instruction) in Tmut, i.e. CTD = trefx −tmut

x .
SIGFuzz checks if any of the instructions in the reference and

mutated tests have violated property 1 or property 2 using the
microarchitectural traces generated in step 3⃝. A violation of ei-
ther property indicates a potential side channel. This information
is relayed to 5⃝. SIGFuzz also calculates CTD using microarchi-
tectural traces and passes it on to step 5⃝, where it gets stored in
the bin database along with the signature of the xth instruction.

5) Signature Extraction and Binning: Due to the random
nature of tests generated by a fuzzing engine, the same side
channel can be formed multiple times during a fuzzing session.
To avoid analyzing the same side channel repetitively, SIGFuzz
introduces a grouping method based on the microarchitectural
activity trace, i.e., the signature of the trigger instruction. This
is based on the idea that if two instructions triggered two side
channels and the signatures of the two instructions are the
same, the side channel they triggered should be the same.
Extracting the signature. The signature of an instruction is
extracted by applying the same differential method mentioned
in section III-A on microarchitectural traces. To explain the
process of signature extraction, let’s call the signature of the
xth instruction as Sx. Sx is extracted by performing a bitwise
subtraction operation between µT ref and µTmut

x from the
beginning of two logs till the commit line of x in µTref . This
process is illustrated in Figure 4. In a scenario where x takes
more clock cycles to commit than the nop instruction (CTD >
0), additional lines in µTx are included directly in the signature
without the subtraction operation.
Bin Database (BDB). SIGFuzz maintains a bin database for
storing the signatures captured during a fuzzing session. In
BDB, signatures are first sorted based on their instruction
mnemonic, and for each mnemonic we have one or more bins,
where each bin corresponds to a group of similar signatures.
After extracting a signature, SIGFuzz checks the bins under
the instruction mnemonic for a similar signature. If a similar
signature is found in a bin, the extracted signature is added to
the same bin. The process for checking similarity is described
later in this section. If the extracted signature is different from
the existing signature(s) for that instruction mnemonic, a new
bin is created with the new signature. In summary, the bin
database contains bins for each mnemonic, each bin representing
a unique microarchitectural behavior of an instruction.
Comparing signatures. All signatures added to a bin are
averaged to create a ‘composite signature’ that represents all

signatures in the bin. Averaging is also done individually for each
bit in the signature. To check the similarity of a new signature
with the ‘composite signature’ of a bin, SIGFuzz first checks
whether the new signature and the ‘composite signature’ have
the same length. If the length of the two signatures is the same,
we create a binary matrix for each signature where each column
represents how a mux control signal in the processor changed
during the lifetime of an instruction. Then, SIGFuzz calculates
the Normalized Hamming Distance (NHD) between correspond-
ing columns of two matrices and generates a list of NHD values,
one for each column. The maximum of these NHD values is used
as an inversely related metric for the similarity of two signatures.
For example, if the maximum NHD between the columns of two
signatures is 0.2 (out of 1), that relates to a 80% similarity be-
tween the two signatures. SIGFuzz then uses a predefined thresh-
old of 0.3 with the maximum NHD value to classify whether
two signatures are similar or not. We decided the threshold value
manually by checking the NHD values between the signatures
of instructions that have the same microarchitectural behaviors.

If step 4⃝ indicated a property violation by an instruction,
the bin containing the signature of that instruction is marked in
BDB with the property it violated. After SIGFuzz executes all
mutated tests in step 1⃝, it takes another test from the fuzzing
engine and continues the same process.

6) Report Generation: Once the fuzzing session ends after
a user-specified time, SIGFuzz automatically generates a
detailed report from the bin database, with bins that relate to
side-channel behaviors flagged. During this process, SIGFuzz
creates a histogram of CTD for each instruction mnemonic.
That is used to generate a Gaussian Kernel Density Estimate
(KDE) function, in which maxima and minima are used to
identify the number of clusters in the distribution. The number
of clusters for each mnemonic is included in the report and
mnemonics with more than one cluster are marked as having
potential side-channel behaviors. We show an example on how
clusters in CTD histogram relate to side channels in Section IV.

IV. SIDE CHANNEL DETECTION

In this section, we first describe our experimental setup and
then present an example of how finding clusters in the histogram
of CTDs led us to discover a new side channel. Next, we present
the new and known side channels discovered by SIGFuzz.

A. Experimental Setup

We implemented and evaluated SIGFuzz on two commonly
used open-source RISC-V processors, Rocket [17] and BOOM
[18]. We used DifuzzRTL [11] as the fuzzing engine and
register coverage [11] as feedback in the implementation of
SIGFuzz. We used the Verilator RTL simulator to run RTL
simulations for both processors. All results were obtained by
running SIGFuzz on server nodes with Intel Xeon E5-2670
CPUs and CentOS Linux 7 as the operating system.

We ran five 4-hour fuzzing sessions with SIGFuzz for each
processor and collected the automatically generated reports.
We went through the instructions and bins that were flagged as
potential side channels in these reports and found three new side
channels and two known side channels [8], [20]. Two of these

0 20 40 60
Commit Time Difference (CTD)

0.0

2.5

5.0

7.5

10.0

No
. o

f i
ns

tru
ct

io
ns

 w
ith

CT
D=

x

6

5

4

Ga
us

sia
n

KD
E

Gaussian KDE

(a) div

0 2 4
Commit Time Difference (CTD)
0

5

10

No
. o

f i
ns

tru
ct

io
ns

 w
ith

CT
D=

x

3.25

3.24

3.23

Ga
us

sia
n

KD
E

Gaussian KDE

(b) fnmadd.s

Fig. 5. CTD histograms and Gaussian Kernel Density Estimate (KDE) for
(a) div and (b) fnmadd.s instructions on BOOM processor.

side channels were common for both Rocket and BOOM while
the third one was unique to BOOM. Rocket and BOOM having
the same side channels is not surprising as they share the im-
plementations of several functional units. Both known and new
side channels that SIGFuzz detected are listed in Table I. In a
4-hour fuzzing session, on average, the number of reference and
mutated tests executed for the Rocket core were 337 and 3284,
respectively, while they were 209 and 1851 for the BOOM core.

B. Discovering Side Channels Through CTD Histogram

Here, we use CTD histogram and Gaussian Kernel Density Es-
timate (KDE) of two example instructions to explain how we can
use clusters to identify side channels. Figure 5 shows the histor-
grams for div and fnmadd.s instructions. As shown in Figure
5a, the div instruction has two CTD clusters, and the KDE has
two maxima and one minima due to the two CTD clusters. In
contrast, KDE of fnmadd.s instruction (Figure 5b) has only
one maxima due to a single cluster. We manually investigated
the root cause for div instructions having two CTD clusters. We
observed that in the left cluster of the div instruction dividend
is greater than the divisor, while the dividend is smaller than the
divisor in the right cluster. We confirmed that this behavior is
common to both Rocket and BOOM. This led us to conclude the
existence of a timing side channel in the division unit of both
Rocket and BOOM processors (Table I, No. 4). For fnmadd.s
mnemonic, we only observed one cluster. This led us to conclude
that fnmadd.s does not have a side channel behavior.

C. New Side Channels Discovered by SIGFuzz

1. Store Conditional (SC) Side Channel. This side channel
was triggered by store conditional instructions and was
identified due to a violation of property 2. SC instructions in
RISC-V ISA store a value to a given address if a reservation
made by a prior load-reserve instruction to the same address
still exists. We observed that, regardless of a reservation, a SC
instruction causes an additional delay in a later load instruction
if the load instruction is accessing an address that maps to
the same cache line accessed by the SC instruction. A further
investigation revealed that SC instructions bring data to cache
and mark them as ‘dirty’, regardless of whether an actual store
was performed or not. The processor thus takes additional time
to first write the ‘dirty’ data accessed by the SC instruction,
delaying the execution of the load instruction. Both BOOM
and Rocket have write-back cache implementations, which
keep the ‘dirty’ data in the cache until it is evicted.

2. Division Unit Side Channel. This side channel was
discovered through the clusters that SIGFuzz identified in CTD
histogram of division instructions as explained in IV-B. Division
instructions take additional 78 cycles in BOOM to finish
when the divisor > dividend compared to when the divisor <
dividend. We demonstrate the exploitability of this side channel
in Section V by presenting a novel Spectre-style attack.
3. Load Side Channel. We discovered this side channel through
the violation of property 1 when fuzzing the BOOM processor
using SIGFuzz. We observed that a ld instruction gets delayed
by 8 cycles when there is a ld instruction later in the program,
even when there are no data dependencies between the two.
BOOM developers confirmed this as an unexpected behavior.

D. Known Side Channels Discovered by SIGFuzz

4. ORC Attack Side Channel [20]. SIGFuzz identified this side
channel due to a violation of property 2 by store instructions. A
load instruction is delayed if it was mapped to the same cache
line as a pending store operation that was executed earlier.
5. Spectre-STC Side Channel [8]. SIGFuzz identified this
side channel due to a violation of property 1 by floating-point
instructions in BOOM. Spectre-STC uses a contention-based
side channel, which delays the execution of division instructions
by ALU and multiplication instructions that are after the
division instruction in the program code. The root cause of this
behavior is BOOM giving priority to ALU and multiplication
instructions over division instruction when contention is created
at the register file write port. SIGFuzz identified a scenario
where an additional delay was introduced to an earlier division
instruction when a floating-point instruction was replaced by
a nop. In BOOM, nop instruction is decoded as a addi
instruction (which is an ALU instruction) with all operand
values set to zero. Therefore, we concluded that this is the
same side channel used in Spectre-STC.

V. SIDE CHANNEL EXPLOITATION

In this section, we demonstrate a novel Spectre-style attack
based on the division unit side channel detected by SIGFuzz.
The Spectre attack exploits the transiently executed instructions
after a control or data flow misprediction. During the transient
window created by a misprediction, Spectre leaks otherwise
inaccessible data by encoding it in the cache. Later an attacker
can use a cache covert channel to access this data.

Figure 6 shows the minimum proof-of-concept code that can
be used to illustrate the Spectre-style attack we propose. The
first part of the code (line 1 to 11) uses a set of floating-point
division operations to delay resolving the branch at line 13. This
delay will make the processor execute instructions inside the if
condition speculatively, given that the branch predictor predicts
the branch at line 13 as taken. In this attack, we assume that
the attacker can control the values of idx and probe_val
and knows the address of the secret he wants to access. To leak
information about a secret stored in the memory, attacker can
set idx as idx = (address of the secret - address of array1).
This will result in reading the secret value during the transient
window created by the branch on line 13 and using it as

TABLE I
SIDE CHANNELS DISCOVERED BY SIGFUZZ IN ROCKET AND BOOM PROCESSORS.

No Processor Description of the side channel New/Known? Flagged property or ED
1 Rocket,

BOOM
Store conditional (sc) instructions bring data to cache and mark them as dirty regardless
of the store conditional success. This delays the later memory accesses that map to the
same cache line because data needs to be written back.

New Property 2

2 Rocket,
BOOM

In a division instruction, if the divisor is larger than the dividend or equal to zero, the
instruction takes longer time to execute compared to other scenarios.

New Effective Delay

3 BOOM If a load instruction is followed by another load instruction, the earlier load gets delayed. New Property 1
4 Rocket Side channel used in ORC attack [20]. If there is a pending store to a particular cache line,

loads that map to the same cache line are delayed till the store is done.
Known Property 2

5 BOOM Side channel used in Spectre-STC [8] attack. Division instructions get delayed due to the
contention created at the registerfile write port by later ALU and multiplication instructions.

Known Property 1

1 array1_sz = array1_sz << 3;
2 asm("fcvt.s.lu fa4, %[in]\n"
3 "fcvt.s.lu fa5, %[inout]\n"
4 "fdiv.s fa5, fa5, fa4\n"
5 "fdiv.s fa5, fa5, fa4\n"
6 "fdiv.s fa5, fa5, fa4\n"
7 "fcvt.lu.s %[out], fa5, rtz\n"
8 : [out] "=r" (array1_sz)
9 : [inout] "r" (array1_sz),

10 [in] "r" (dummy)
11 : "fa4", "fa5");
12
13 if (idx < array1_sz){
14 asm("div x1, %[dvd], %[dvs]\n"
15 "slli x1, x1, 6\n"
16 "add x1, x1, %[daddr]\n"
17 "lw %[out], (x1)\n"
18 : [out] "=r" (dummy)
19 : [dvd] "r" (array1[idx]),
20 [dvs] "r" (probe_val),
21 [daddr] "r" (&dummyaddr)
22 : "x1");
23 }

Fig. 6. Minimal RISC-V code for Spectre-style attack based on the side
channel in the division instruction.

the dividend of the division instruction on line 14. Division
instruction at line 14 uses the probe_val as the divisor.

If the secret value is greater than the probe_val, division in-
struction takes less time to execute, allowing the load instruction
at line 17 to execute during the transient window, which accesses
a dummy address accessible to the attacker. If the secret value
is less than the probe_val, division instruction takes more
time to execute, resulting in the load instruction not executing
within the transient window. If the load instruction is executed,
it brings the data at dummyaddr to the cache. Also, note that a
dependence between the division result and the load instruction
is added so that the load instruction is not speculatively executed
while the processor calculates the division result. Therefore, after
the code sequence given in Figure 6 is executed, an attacker can
check whether the data at dummyaddr is cached or not and de-
duce whether the secret value was greater than the probe_val
or not. The attacker can use different values for probe_val
iteratively and figure out the secret value (through binary search).

VI. CONCLUSION

We propose SIGFuzz, a fuzzing-based framework for
detecting microarchitectural timing side channels at design
time. SIGFuzz determines variations in instruction execution
times to identify timing-based side channels. We implemented
and evaluated SIGFuzz on two open-source RISC-V processors,
Rocket and BOOM. SIGFuzz discovered three new and
two known side channels in these processors, demonstrating
its effectiveness and practicality. We presented a novel

Spectre-style attack based on a new side channel that SIGFuzz
detected, showing the importance of identifying side channels
early in the design process to ensure processor security.

ACKNOWLEDGMENT

Parts of this work are funded by Air Force Research
Laboratory (AFRL) and Defense Advanced Research Projects
Agency (DARPA) under agreement number FA8650-18-2-
7856, and by NSF Award 1916393. The U.S. Government is
authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon.

REFERENCES

[1] Q. Ge et al., “A survey of microarchitectural timing attacks and
countermeasures on contemporary hardware,” Journal of Cryptographic
Engineering, vol. 8, no. 1, pp. 1–27, 2018.

[2] P. Kocher et al., “Spectre attacks: Exploiting speculative execution,” in
IEEE SP, 2019, pp. 1–19.

[3] M. Lipp et al., “Meltdown: Reading kernel memory from user space,”
in USENIX Security, 2018, pp. 973–990.

[4] X. Lou et al., “A survey of microarchitectural side-channel vulnerabilities,
attacks, and defenses in cryptography,” ACM Comput. Surv., vol. 54,
no. 6, 2021.

[5] Y. Shin et al., “Unveiling hardware-based data prefetcher, a hidden source
of information leakage,” in CCS, 2018, p. 131–145.

[6] A. Fogh, “Two covert channels,” https://cyber.wtf/2016/08/, 2016.
[7] D. Weber et al., “Osiris: Automated discovery of microarchitectural side

channels,” in USENIX Security, 2021, pp. 1415–1432.
[8] M. R. Fadiheh et al., “An exhaustive approach to detecting transient

execution side channels in rtl designs of processors,” IEEE Transactions
on Computers, pp. 1–1, 2022.

[9] Google, “Oss-fuzz: Continuous fuzzing for open source software,”
https://github.com/google/oss-fuzz, 2016.

[10] S. Canakci et al., “Processorfuzz: Guiding processor fuzzing
using control and status registers,” 2022. [Online]. Available:
https://arxiv.org/abs/2209.01789

[11] J. Hur et al., “Difuzzrtl: Differential fuzz testing to find cpu bugs,” in
IEEE SP, 2021, pp. 1286–1303.

[12] R. Kande et al., “TheHuzz: Instruction fuzzing of processors using
Golden-Reference models for finding Software-Exploitable vulnerabilities,”
in USENIX Security, 2022, pp. 3219–3236.

[13] S. Canakci et al., “Directfuzz: Automated test generation for rtl designs
using directed graybox fuzzing,” in DAC, 2021, pp. 529–534.

[14] A. Fogh, “Covert shotgun: automatically finding smt covert channels,”
https://cyber.wtf/2016/09/27/covert-shotgun/, 2016.

[15] B. Gras et al., “ABSynthe: Automatic Blackbox Side-channel Synthesis
on Commodity Microarchitectures,” in NDSS, 2020.

[16] M. Luo et al., “Autocat: Reinforcement learning for automated exploration
of cache timing-channel attacks,” 2022.

[17] “The rocket chip generator,” https://github.com/chipsalliance/rocket-chip.
[18] “Boom: Berkeley out-of-order machine,” https://github.com/riscv-

boom/riscv-boom.
[19] Y. Yarom et al., “FLUSH+RELOAD: A high resolution, low noise, l3

cache Side-Channel attack,” in USENIX Security, 2014, pp. 719–732.
[20] M. R. Fadiheh et al., “Processor hardware security vulnerabilities and

their detection by unique program execution checking,” in DATE, 2019,
pp. 994–999.

