
Article https://doi.org/10.1038/s41467-024-49324-8

A blueprint for precise and fault-tolerant
analog neural networks

Cansu Demirkiran 1 , Lakshmi Nair2, Darius Bunandar 2 & Ajay Joshi1

Analog computing has reemerged as a promising avenue for accelerating deep
neural networks (DNNs) to overcome the scalability challenges posed by tra-
ditional digital architectures. However, achieving high precision using analog
technologies is challenging, as high-precision data converters are costly and
impractical. In this work, we address this challenge by using the residue
number system (RNS) and composing high-precision operations frommultiple
low-precision operations, thereby eliminating the need for high-precision data
converters and information loss. Our study demonstrates that the RNS-based
approach can achieve ≥99% FP32 accuracy with 6-bit integer arithmetic for
DNN inference and 7-bit forDNN training. The reducedprecision requirements
imply that using RNS can achieve several orders of magnitude higher energy
efficiency while maintaining the same throughput compared to conventional
analog hardware with the same precision. We also present a fault-tolerant
dataflow using redundant RNS to protect the computation against noise and
errors inherent within analog hardware.

Deep Neural Networks (DNNs) are widely employed across various
applications today. Unfortunately, their compute, memory, and com-
munication demands are continuously on the rise. The slow-down in
CMOS technology scaling, along with these increasing demands has
led analog DNN accelerators to gain significant research interest.
Recent research has focused on using various analog technologies
such as photonic cores1–7, resistive arrays8–12, switched capacitor
arrays13,14, Phase Change Materials (PCM)15, Spin-Transfer Torque
(STT)-RAM16,17, etc., to enable highly parallel, fast, and efficient matrix-
vector multiplications (MVMs) in the analog domain. These MVMs are
fundamental blocks used to build generalmatrix-matrixmultiplication
(GEMM) operations, which make up more than 90% of the operations
in DNN inference and training18.

The success of this approach, however, is constrained by the
limited precision of the digital-to-analog and analog-to-digital data
converters (i.e., DACs and ADCs). In an analog accelerator, the data is
converted between analog and digital domains using DACs and ADCs
before and after every analog operation. Typically, a complete GEMM
operation cannot be performed at once in the analog domain due to
the fixed size of the analog core. Instead, the GEMM operation is tiled
into smaller MVM operations. As a result, each MVM operation pro-
duces a partial output that must be accumulated with other partial

outputs to obtain the final GEMM result. Concretely, an MVM opera-
tion consists of parallel dot products between bw-bit signed weight
vectors and bin-bit signed input vectors—each with h elements—
resulting in a partial output containing bout bits of information, where
bout =bin + bw + log2ðhÞ � 1. An ADC with a precision greater than bout
(i.e., bADC≥bout) is required to ensure no loss of information when
capturing these partial outputs. Unfortunately, the energy consump-
tion of ADCs increases exponentially with bit precision (often referred
to as effective number of bits (ENOB)). This increase is roughly 4 × for
each additional bit19.

As a result, energy-efficient analog accelerator designs typically
employ ADCs with lower precision than bout and only capture the bADC
most significant bits (MSBs) from the bout bits of each partial output20.
Reading only MSBs causes information loss in each partial output
leading to accuracy degradation in DNNs, as pointed out by Rekhi
et al.20. This degradation is most pronounced in large DNNs and large
datasets. Figure 1 shows the impact of this approach on DNN accuracy
in two tasks: (1) a two-layer convolutional neural network (CNN) for
classifying the MNIST dataset21: a simple task with only 10 classes, and
(2) the ResNet-50 CNN22 for classifying the ImageNet dataset23: a more
challenging task with 1000 classes. As the vector size h increases,
higher precision is needed at the output to maintain the accuracy in
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bothDNNs.Moreover, ResNet-50 experiences accuracy degradation at
smaller values of h compared to the two-layer CNN. While using a
higher precisionADCcanhelp recover from this accuracydegradation,
it significantly reduces the energy efficiency of the analog hardware.
Essentially, to efficiently execute largeDNNsusing analog accelerators,
it is crucial to find a better way to achieve high accuracy than simply
increasing the bit precision of the data converters.

In this work, we present a universal residue number system (RNS)-
based framework to overcome the abovementioned challenge in
analog DNN inference and training. RNS represents high-precision
values using multiple low-precision integer residues for a selected set
of moduli. As such, RNS enables high-precision arithmetic without any
information loss on the partial products, even when using low-
precision DACs and ADCs. The use of RNS leads to a significant
reduction in the data converter energy consumption, which is the
primary contributor to energy usage in analog accelerators. This
reduction can reach up to six orders of magnitude compared to a
conventional fixed-point analog core with the same output bit
precision.

Our study shows that the RNS-based approach enables ≥99%
FP32 inference accuracy by using only 6-bit data converters for state-
of-the-art MLPerf (Inference: Datacenters) benchmarks24 and Large
Language Models (LLMs). We also demonstrate the applicability of
this approach in training and fine-tuning state-of-the-art DNNs using
low-precision analog hardware. The RNS approach, however, is sus-
ceptible to noise as small errors in the residues scale up during
output reconstruction, leading to larger errors in the standard
representation. To address this issue, we incorporate the Redundant
RNS (RRNS) error-correcting code25–27 to introduce fault-tolerance
capabilities into the dataflow.

As RNS is closed under multiplication and addition, no significant
changes are required in the design of the analog core or in howGEMM
operations are performed. Unlike a conventional analog core design,
performing RNS operations necessitates an analog modulo operation.
This operation can be implemented by using ring oscillators28 in an

analog electrical core or by using optical phase shifters in an analog
optical core. Our proposed framework, however, remains agnostic to
the underlying technology. Importantly, arbitrary fixed-point preci-
sion can be achieved by combining the positional number system
(PNS) and RNS in analog hardware. Overall, our presented RNS-based
methodology offers a solution combining high accuracy, high energy
efficiency, and fault tolerance in analog DNN inference and training.

Results
DNN inference and training using RNS
The RNS represents an integer as a set of smaller integer residues.
These residues are calculated by performing a modulo operation on
the said integer using a selected set of n co-prime moduli. Let A be an
integer. A can be represented in the RNS with n residues as
A= fa1, . . . ,ang for a set of co-prime moduli M= fm1, . . . ,mng where
ai = jAjmi

� Amod mi for i∈ {1,…, n}. A can be uniquely reconstructed
using the Chinese Remainder Theorem (CRT):

A=
Xn
i = 1

aiMiTi

�����
�����
M

, ð1Þ

if A is within the range [0,M) whereM =∏imi. Here,Mi =M/mi and Ti is
the multiplicative inverse of Mi, i.e., ∣MiTi∣mi

� 1. Hereinafter, we refer
to the integer A as the standard representation, while we refer to the
set of integers A= fa1, . . . ,ang simply as the residues.

A DNN consists of a sequence of L layers. During inference, where
the DNN is previously trained and its parameters are fixed, only a
forward pass is performed. Generically, the input X to (ℓ + 1)-th layer of
a DNNduring the forwardpass is the output generated by the previous
ℓ-th layer:

X ð‘+ 1Þ = f ð‘Þ W ð‘ÞX ð‘Þ
� �

, ð2Þ

where O(ℓ) =W(ℓ)X(ℓ) is a GEMM operation and f(ℓ)( ⋅ ) is an element-wise
nonlinear function applied to the GEMM output, O(ℓ).

Fig. 1 | Inference accuracy versus vector size (h) for varying data bit-width in a
conventional analog core. a Inference accuracy for a two-layer CNN classifying
handwritten digits from the MNIST dataset. b Inference accuracy for ResNet-50
classifying images from the ImageNet dataset evaluated in an analog core with

varying precision b and vector sizes h. For both a and b, b-bit precision means
b = bDAC = bADC < bout where b varies between 2 and 8. The black dashed line
represents the inference accuracy of the same models and datasets in FP32 data
format.
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DNN training requires both forward and backward passes as well
as weight updates. The forward pass in the training is performed the
same way as in Eq. (2). After the forward pass, a loss value L is calcu-
lated using the output of the last layer and the ground truth. The
gradients of the DNN activations and parameters with respect to L for
each layer are calculated by performing a backward pass after each
forward pass:

∂L
∂X ð‘Þ =W

ð‘ÞT ∂L
∂Oð‘Þ , ð3Þ

∂L
∂W ð‘Þ =

∂L
∂Oð‘Þ X

ð‘ÞT : ð4Þ

Using these weight gradients ΔW ð‘Þ = ∂L
∂W ð‘Þ, the DNN parameters

are updated in each iteration i:

W ð‘Þ
i+ 1 =W

ð‘Þ
i � ηΔW ð‘Þ

i ð5Þ

with a step size η for a simple stochastic gradient descent (SGD)
optimization algorithm.

Essentially, for each layer, one GEMM operation is performed in
the forward pass and two GEMM operations are performed in the
backward pass. Because RNS is closed under addition and multi-
plication operations, GEMM operations can be performed in the RNS
space. Using the RNS, Eq. (2) can be rewritten as:

X ð‘+ 1Þ = f ð‘Þ CRT ∣∣W ð‘Þ∣M∣X ð‘Þ∣M∣M
� �� �

: ð6Þ

The same approach applies to Eqs. (3) and (4) in the backward pass.
The moduli set M must be chosen to ensure that the outputs of

the RNS operations are smaller thanM, meaning that

log2M ≥bout =bin +bw + log2ðhÞ � 1 ð7Þ

should be guaranteed for a dot product between bin-bit input and bw-
bit weight vectors with h-elements. This constraint prevents overflow
during computation.

Precision and accuracy in the RNS-based analog core
The selection of the moduli setM, which is constrained by Eq. (7), has
a direct impact on the achievable precision at the MVM output as well
as the energy efficiency of the RNS-based analog core. Table 1 com-
pares RNS-based analog GEMM cores with example moduli sets and
regular fixed-point analog GEMM cores with various bit precision.
Here, we show two cases for the regular fixed-point representation: (1)
the low-precision (LP) case where bout > bADC = bDAC, and (2) the high-
precision (HP) casewhere bout = bADC > bDAC. It should be noted that all
three analog cores represent data as fixed-point numbers. We use the
term regular fixed-point core to refer to a typical analog core that
performs computations in the standard representation (without RNS).
RNS-based core refers to an analog core that performs computations
on the fixed-point residues.

While the LP approach introduces bout − bADC bits of information
loss in every dot product, the HP approach uses high-precision ADCs
to prevent this loss. For the RNS-based core, we picked
bin = bw =bADC =bDAC = dlog2mie � b for ease of comparison against
the fixed-point cores. Table 1 shows example moduli sets that are
chosen to guarantee Eq. (7) for h = 128 while keeping themoduli under
the chosen bit-width b. In this case, for nmoduli with bit-width of b,M
covers≈ n ⋅ b bits of range at the output. h is chosen to be 128 as an
example considering the common layer sizes in the evaluated MLPerf
(Inference: Datacenter) benchmarks. The chosen h provides high
throughput with high utilization of the GEMM core.

Figure 2a compares the error (with respect to the FP32 results)
observed when performing dot products with the RNS-based core and
the LP fixed-point core with the same bit precision. Both cores use the
configurations described in Table 1 for the example vector size h = 128.
The larger absolute error observed in the LP fixed-point case illustrates
the impact of the abovementioned information loss due to bADC < bout.
HP fixed-point case is not shown as it is equivalent to the RNS case in
terms of the observed error.

Figure 2b compares the inference accuracy in MLPerf (Inference:
Datacenters) benchmarks24 and OPT29 (a transformer-based LLM)
when run on an RNS-based analog core and a fixed-point (LP) analog
core. The HP fixed-point analog core is not shown as its accuracy is the
same as the RNS-based core. The evaluated DNNs, their corresponding
tasks, and the datasets are listed in Table 2. Figure 2b shows that the
RNS-based approach significantly ameliorates the accuracy drop
caused by the low-precision ADCs used in the LP fixed-point approach
for all evaluated DNNs. By using the RNS-based approach, it is possible
to achieve ≥99% of FP32 accuracy (this cut-off is defined in the MLPerf
benchmarks24) for all evaluated benchmarks when using residues with
6 bit precision. This number can be lowered to 5 bits for BERT-Large
and RNN-T and 4 bits for DLRM.

Besides its success in DNN inference, the RNS-based approach
opens the door for analog computing to be used in tasks that require
higher precision thanDNN inference such asDNN training. Figure 2c–e
shows the loss calculated during DNN training/fine-tuning. Table 3
reports the validation accuracy after FP32 and RNS-based low-preci-
sion training. Here, the GEMM operations during forward and back-
ward passes of training follow the same methodology as inference,
with weight updates carried out in FP32. These experiments show that
≥99% FP32 validation accuracy is achievable after training ResNet-50
from scratch using the RNS-based approach with only 6-bit moduli.
Similarly, fine-tuning BERT-Large and OPT-125M by using 5-bit and
7-bit moduli, respectively, can reach ≥99% FP32 validation accuracy.
These results are noticeably promising as the previous efforts on
analog DNN hardware that adopted the LP fixed-point approach have
never successfully demonstrated the training of state-of-the-art DNNs
due to the limited precision of this approach.

Figure 3 illustrates the dataflow of the RNS-based analog core
when performingMVM as part of the DNN inference/training. An input
vector X and a weight matrix W to be multiplied in the MVM unit are
firstmapped to signed integers. Tomitigate the quantization effects, X
and each row inW are scaled by an FP32 scaling factor that is unique to

Table 1 | Data and data converter precision in RNS-based, LP fixed-point, and HP fixed-point analog cores

RNS-based Core (This work) LP Fixed-Point Core HP Fixed-Point Core

bin, bw bDAC log2M bADC Moduli Set ðMÞ RNS Range (M) bDAC bout bADC Lost LSBs bDAC bout bADC

4 4 4 4 {15, 14, 13, 11} ≃ 215 4 14 4 10 4 14 14

5 5 5 5 {31, 29, 28, 27} ≃ 219 5 16 5 11 5 16 16

6 6 6 6 {63, 62, 61, 59} ≃ 224 6 18 6 12 6 18 18

7 7 7 7 {127, 126, 125} ≃ 221 7 20 7 13 7 20 20

8 8 8 8 {255, 254, 253} ≃ 224 8 22 8 14 8 22 22

Article https://doi.org/10.1038/s41467-024-49324-8

Nature Communications |         (2024) 15:5098 3



the vector (SeeMethods). The signed integers are then converted into
RNS residues through modulo operation (i.e., forward conversion). By
construction, each residue is within the range of [0,mi). To achieve the
same throughput as a fixed-point analog core, the RNS-based analog
core with n moduli requires using n analog MVM units—one for each
modulus—and running them inparallel. EachanalogMVMunit requires
a set of DACs for converting the associated input and weight residues
into the analog domain. The MVM operations are followed by an
analogmodulooperation on eachoutput residue vector. Thanks to the
modulo operation, the output residues—to be captured by ADCs—are
reduced back to the [0,mi) range. Therefore, a bit precision of
dlog2mie is adequate for both DACs and ADCs to perform input and
output conversions without any information loss. The output residues
are then converted back to the standard representation in the digital
domain using Eq. (1) to generate the signed-integer output vector,
which is then mapped back to an FP32 final output Y. The non-linear
function f (e.g., ReLU, sigmoid, etc.) is then applied digitally in FP32.

RRNS for fault tolerance
Analog compute cores are sensitive to noise. In the case of RNS, even
small errors in the residues can result in a large error in the corre-
sponding integer they represent. The RRNS25–27 can detect and correct

errors—making the RNS-based analog core fault tolerant. RRNS uses a
total of n + k moduli: n non-redundant and k redundant. An RRNS(n +
k, n) code can detect up to k errors and can correct up to bk2c errors. In
particular, the error in the codeword (i.e., the n + k residues repre-
senting an integer in the RRNS space) can be one of the follow-
ing cases:

• Case 1: Fewer than bk2c residues have errors—thereby they are
correctable,

• Case 2: Between bk2c and k residues have errors or the codeword
with more than k errors does not overlap with another codeword
in the RRNS space—thereby the error is detectable,

• Case 3: More than k residues have errors and the erroneous
codeword overlaps with another codeword in the RRNS space—
thereby the error goes undetected.

Errors are detected by using majority logic decoding wherein we

divide the total n + k output residues into
n + k
n

� �
groups with n

residues per group and compare the results obtained fromeach group.
If more than 50% of the groups have the same result, then the gener-
ated codeword is assumed correct. This either corresponds to Case 1

Fig. 2 | Precision and accuracy comparison of the RNS-based analog core
against a regular fixed-point analog core. a The distribution of average error
observed at the output of a dot product performed with the RNS-based analog
approach (pink) and the LP regular fixed-point analog approach (cyan). Error is
defined as the distance from the result calculated in FP32. The experiments are
repeated for 10,000 randomly generated vector pairs with a vector size of h = 128.
The center lines of the boxes represent themedian. The boxes extend between the
first and the third quartile of the data, while whiskers extend 1.5 × of the inter-
quartile range from the box. b Inference accuracy of regular fixed-point (LP) and

RNS-based cores (See Table 1) onMLPerf (Inference: Datacenters) benchmarks. The
accuracy numbers are normalized by the accuracy achieved in FP32. The bottom
three plots show the loss during training for FP32 and theRNS-based approachwith
varyingmoduli bit-width. ResNet-50 (c) is trained from scratch for 90 epochs using
the SGD optimizer with momentum. BERT-Large (d) and OPT-125M (e) are fine-
tuned from pre-trained models. Both models are fine-tuned using the Adam opti-
mizer with a linear learning rate scheduler for 2 and 3 epochs for BERT-Large and
OPT-125M, respectively. All inference and training experiments use FP32 for all non-
GEMM operations. See Accuracy Modeling under Methods for details.

Table 2 | MLPerf (Inference: Datacenters) benchmarks

DNN Task Dataset

ResNet-50 Image classification ImageNet23

BERT-Large Question answering SQuADv1.155

RNN-T Speech recognition Librispeech56

ResNet-34 (SSD) Object detection MS COCO57

DLRM Recommendation 1TB Click Logs58

OPT-125M Language Modeling Wikitext59

OPT-350M Language Modeling Wikitext

Table 3 | Validation accuracy results after training/fine-tuning

ResNet-50 BERT-Large OPT-125M
Precision Acc.(%) F1 Score (%) Acc.(%)/

Perplexity

FP32 75.80 91.03 43.95/19.72

8-bit 75.77 90.98 43.86/20.00

7-bit 75.68 90.97 43.59/20.71

6-bit 75.13 90.85 42.79/22.62

5-bit 59.72 90.81 41.45/26.17

4-bit 42.15 89.66 38.64/35.65
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where the result is actually correct or Case 3, where the erroneous
codeword generated by the majority of the groups overlaps with
another codeword. The latter situation leads to an incorrect majority
among the groups causing the error to go undetected. In contrast, not
having a majority indicates that the generated codeword is erroneous
and cannot be corrected. This corresponds to Case 2. In this case, the
detected errors can be eliminated by repeating the calculation. One
simple way of performing majority logic decoding in this context is to

convert the residues in each
n + k
n

� �
group back to the standard

representation via CRT to generate anoutput value for eachgroup and
compare the results. To optimize the hardware performance of this
error detection process, more efficient base-extension-based
algorithms30 instead of CRT can be applied.

The final error probability in an RRNS code depends on the non-
correctable error probability observed in the residues. The overall
error rate is influenced by the chosen moduli set and the number of
attempts at correction of the detected errors (See Methods). Let pc,
pd, and pu be the probabilities of Cases 1, 2, and 3 occurring, respec-
tively, when computing a single output. Overall, pc + pd + pu = 1. For a
single attempt (i.e., R = 1), the probability of producing the incorrect
output integer is perr(R = 1) = 1 − pc = pu + pd. It is possible to repeat the
detected erroneous calculationsR > 1-times tominimize the amount of
uncorrected error at the expense of increasing compute latency and
energy. In this case, the probability of having an incorrect output after

R attempts of error correction is

perrðRÞ= 1� pc

XR�1

r =0

ðpdÞr : ð8Þ

As the number of attempts increases, the output error probability
decreases and converges to limR!1perrðRÞ=pu=ðpu +pcÞ.

Figure 4 shows how perr changes with the error probability in a
single residue (p) for different numbers of redundant moduli (k) and
attempts (R) and moduli sets with different bit-widths. Broadly, as p
increases, the perr tends to 1. For a given number of R, a higher bit
precision and higher k results in a lower perr. For a fixed k and a fixed
number of bits per moduli, perr decreases as R increases.

Figure 5 investigates the impact of noise on the accuracy of two
large and importantMLPerf benchmarks—ResNet-50 andBERT-Large—
when error correction is applied via RRNS. The two models show
similar behavior: increasing k and increasing R decrease perr for the
same p, enabling to sustain high accuracy for higher p. ResNet-50
requires ~3.9 GigaMAC operations (GOp) per inference on a single
input image. For a 128 × 128 MVM unit, inferring an ImageNet image
through the entire network involves computing ~29.4M partial output
elements. Therefore, the expected transition point from an accurate
network to an inaccurate network is at perr = ≤1/29.4M = 3.4 × 10−8. This
perr transition point is ≤1/358.6M= 2.8 × 10−9 for BERT-Large. Figure 5
shows, however, that the evaluated DNNs are more resilient to noise
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than expected: they can tolerate higher perr while maintaining good
accuracy. The accuracy of ResNet-50 only starts degrading (below 99%
FP32)when perr ≈ 4.5 × 10−5 (1000× higher than the estimated value) on
average amongst the experiments shown in Fig. 5. This transition
probability is perr ≈ 4 × 10−4 for BERT-Large (on average
100,000× higher than the estimated value).

In analoghardware, expected p and perr depend on the underlying
analog technology, device characteristics, and many other factors. As
an example, we study a photonics-based RNS analog accelerator
design that is thermal and shot noise-limited. The noise can be mod-
eled as a Gaussian distribution that is additive to the output value, i.e.,
Σjxjwj +N ð0,1Þσnoise for a dot product31. Many other noise sources
present in various analog designs can be represented using a similar
framework. For an analog core where output is captured as an analog
current, let us define the maximum achievable current as Iout, repre-
senting the largest output value. A higher Iout requires a higher input
power, but results in a higher SNR and lower perr, creating a tradeoff
between power consumption and noise tolerance.

Without any redundant moduli (k =0), Iout≤ 1mA is adequate to
prevent accuracy loss due to analog noise in both DNNs (6-bit case).
This cut-off is at 2 mA and 8 mA for 7-bit and 8-bit cases, respectively.
For instance, for a photonic system, Iout ≤ 1mA requires ~1mW(0 dBm)
output power (for a photodetector with 1 A/W responsivity)—which is
feasible assuming a 10 dBm laser source and 10 dB loss along the
optical path.

The required Iout can be further lowered by using RRNS.
Figure 5g–i shows the relationship between Iout and the expected perr
for different RRNS. For a smaller number of bits and a higher k, a lower
Iout is adequate to stay under the cut-off perr for the evaluated DNNs.

For example, a 6-bit RRNS with k = 1 requires Iout = 0.1 mA for a single
error correction attempt as against the k =0 case where Iout = 1 mA is
needed to avoid accuracy loss due to analog noise. The required Iout
similarly decreases with the increasing R. Please see Noise Modeling
under Methods for details.

Energy and area efficiency in the RNS-based analog core
Figure 6a shows the energy consumption of DACs and ADCs per dot
product for the RNS-based and fixed-point (LP and HP) analog hard-
ware configurations. To achieve the same throughput as the (LP/HP)
fixed-point cores, the RNS-based core with nmodulimust use n sets of
DACs andADCs. Thismakes the energy consumption of the RNS-based
core n× larger compared to the LP fixed-point approach. However, the
LP fixed-point approach with low-precision ADCs experiences infor-
mation loss in the partial outputs and hence has lower accuracy.

The RNS-based and HP fixed-point approaches provide the same
bit precision (i.e., the same DNN accuracy). Yet, using the RNS-based
approach is orders of magnitude more energy-efficient than the HP
fixed-point approach. This is mainly because of the high cost of high-
precision ADCs required to capture the full output in the HP fixed-
point approach. ADCs dominate the energy consumption with
approximately three orders of magnitude higher energy usage than
DACs with the same bit precision. In addition, energy consumption in
ADCs increases exponentially with increasing bit precision19. This
favors using multiple DACs and ADCs with lower precision in the RNS-
based approach over using a single high-precision ADC. The RNS-
based approach briefly provides a sweet spot between the LP and HP
fixed-point approaches without compromising accuracy and energy
efficiency.

Fig. 5 | The impact of the single residue error probability (p) on inference
accuracy and the required analog current for the fault-tolerant RRNS
approach. The plots show ResNet-50 (a–c) and BERT-Large (d–f) inference accu-
racy under varying p forRRNSwith one (a andd), two (b and e), and infinite (c and f)
error correction attempts and a varying number of redundant moduli (k). perr

caused by shot and thermal noise versus the output current at the photodetector in
an analog photonic accelerator for RRNS with one (g), two (h), and infinite (i) error
correction attempts and varying k. The horizontal black lines show the cut-off
points where larger perr starts degrading the accuracy for the evaluated DNNs
(i.e., ResNet-50 and BERT-Large).
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Figure 6b shows the energy consumptionofDACs andADCswhen
RRNS is used. The plot only shows the 5-to-8-bit cases as there are not
enough co-primemoduli smaller than 15 to use RRNS for the 4-bit case.
RRNS results in an approximately linear increase in energy consump-
tion as the number ofmoduli (n + k) increases. The compute time does
not increase with the increasing k as operations for different moduli
are independent and can be performed in parallel.

The area footprint of data converters has a weaker correlation
with their bit precision than their energy consumption. In a study by
Verhelst and Murmann in 201232, the authors observed that the area
footprint of ADCs is proportional to 2αb where α∈ [0.11, 1.07]
depending on the type of the ADC, and is α =0.5 when all ADC types
are considered. Assuming the same technology node is used, Fig. 6c
shows the normalized area footprint of ADCs for the LP and HP fixed-
point, RNS (k =0, nADCs per dot product) and RRNS (k >0, n + k ADCs
per dot product) approaches. While the area footprint of the RNS and

RRNS-based approaches are higher than the LP fixed-point approach,
they have a smaller area footprint than theHP fixed-point approach for
all bit precisions. In addition, the same study points out that the
sampling frequency of ADCs is independent of the area footprint.
Therefore, in the RNS and RRNS approaches, instead of having multi-
ple ADCs per dot product, one can use a single and faster ADC and
performmultiple conversions using the sameADC to achieve the same
throughput with better area efficiency.

Discussion
The RNS (and the fault-tolerant RRNS) framework are agnostic to the
analog technology employed. Generally, GEMMoperations in the RNS
domain can be performed as a regular GEMM operation followed by a
modulo operation. Analog GEMM is well-explored in the literature.
Previous works leveraged photonics1–7, crossbar arrays consisting of
resistive RAM8–12, switched capacitors13,14, PCMcells15, STT-RAM16,17, etc.

Fig. 6 | Energy consumption and area comparison of the RNS- and RRNS-based
and regular fixed-point analog approaches. a Energy consumption of data con-
verters (i.e., DACs and ADCs) per dot product for the RNS-based analog approach
(pink) and the LP (cyan) and HP (dark blue) regular fixed-point analog approaches.
See Data Converter Energy Estimation under Methods for the energy estimation

methodology. b Energy consumption of data converters per dot product for RNS
(k =0) and RRNS (k = 1, 2, and 4) analog approaches. cNormalized area footprint of
ADCs for the LP andHP fixed-point, the RNS-based (k =0, n ADCs per dot product),
and the RRNS-based (k >0, n + k ADCs per dot product) approaches.
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The analog modulo operation can be performed electrically or opti-
cally. As an electrical solution, one canuse ringoscillators, a circuit that
generates a continuous waveform by cycling through a series of
inverters28, to perform modulo operations. By carefully designing the
parameters of the ring oscillator, it is possible to create an output
frequency that corresponds to the desired modulus value. Alter-
natively, the phaseof anoptical signal canbe leveraged for performing
modulo due to the periodicity of phases in optical systems. The optical
phase is inherently modular against 2π. By modulating the phase of an
optical signal, one can achieve modulo operations in the analog
domain. See RNS Operations under Methods for details about both
approaches. In addition, RNS requires forward and reverse conversion
circuits to switch between the RNS and the binary number system
(BNS). The forward conversion is amodulo operationwhile the reverse
conversion can be done using the CRT, mixed-radix conversion, or
look-up tables. The (digital) hardware costs of these forward and
reverse conversion circuits can be reduced by choosing specialmoduli
sets33,34.

While performing successfully in DNN inference and training,
when higher precision is needed, the RNS framework will also be
bound by the same precision limitations discussed in this paper for
conventional analog hardware. For applications requiring higher-
precision arithmetic than the example cases in this study (e.g., some
high-performance computing applications, homomorphic encryption,
etc.), a higher M value and therefore moduli with higher bit-width
might be necessary, requiring higher-precision data converters. This
precision limitation can be completely eliminated by combining the
RNS framework with PNS, allowing to freely work with arbitrary pre-
cision. One can represent an integer value as D separate digits where
eachdigit is represented as a set of residues in the RNSdomain and has
an RNS range of M. This hybrid scheme can achieve Dlog2M bit pre-
cision where D can be liberally increased without increasing the bit
precision of the data converters. Different from the RNS-only scheme,
the hybrid scheme requires overflow detection and carry propagation
from lower digits to higher digits. The overflow detection can be
achieved using two sets of residues: primary and secondary. While the
operations are performed with both sets of residues, base extension
between the two sets helps detect any overflow and propagate the
carry to the higher digits if required. See ExtendedRNSunderMethods
for details.

RNS is a well-explored numeral system that has been used in a
variety of applications including digital signal processing35,
cryptography36, and DNNs37,38. RNS-based DNN computation in digital
hardware was proposed for improving energy efficiency by breaking
numbers into residues with fewer bits. Res-DNN38 proposes an RNS-
based version of the popular DNN accelerator Eyeriss39 and RNS-Net37

uses a processing-in-memory (PIM)-based design and simplifies RNS
operations to PIM-friendly ones. A similar work, DNNARA4, is a nano-
photonic (not analog) RNS-basedDNN inference acceleratorwhere the
authors use 2 × 2 optical switches to build a network and manipulate
the route of the light through this network to perform multiplication
and additions using a one-hot encodedmapping.While all three works
are similar to our study in termsof usingRNS forDNN inference,weare
the first to propose using RNS in the context of analog DNN compu-
tation. In addition, these accelerators all propose fully RNS-based
dataflows without switching back and forth between RNS and BNS.
Although this approach of staying in the RNS domain removes the cost
of the RNS-BNS conversions, it requires periodically performing
overflow detection and ranging operations in the RNS domain to
preserve the integrity of RNS operations.More importantly, these fully
RNS-based computations force the end-to-endDNN to be computed in
fixed-point arithmetic. Performing nonlinear operations in the RNS
domain requires using approximations (e.g., Taylor series expansion)
to reduce nonlinear operations into multiply and add operations.
These approximations in nonlinear functions cause information loss

and demand higher data precision. As a result, these previous works
use 16-bit or higher precision to represent data to achieve high accu-
racy and their proposals are limited toDNN inference. In our approach,
switching back and forth between RNS and BNS for each MVM
operation allows us to control the precision of nonlinear operations
(which are performedondigital hardware) independently andperform
scaling (dynamic quantization) beforeMVMoperations to alleviate the
quantization errors at the data converters (See Accuracy Modeling
under Methods). This approach also enables us to perform back-
propagation and successfully trainDNNswith low-precision arithmetic
(7-bit) besides DNN inference. In contrast to the few previous analog
DNN training demonstrations40,41 that were limited to very simple tasks
(e.g., MNIST classification) and DNNs with a few small layers, our
approach can achieve a much higher dynamic range through RNS and
can successfully train state-of-the-art DNNs. At last, different from
previous works, we analyze the impact of noise on accuracy in RNS-
based DNN inference and integrate RRNS to combat the accuracy loss
caused by the errors in analog hardware.

In conclusion, our work provides a methodology for precise,
energy-efficient, and fault-tolerant analog DNN acceleration. Overall,
we believe that RNS is a crucial numeral system for the development of
next-generation analog hardware capable of both inference and
training of state-of-the-art neural networks for advanced applications,
such as generative artificial intelligence.

Methods
Handling negative numbers with RNS
An RNS with a dynamic range of M allows representing values within
the range of [0,M). This range can be shifted to [ −ψ,ψ], where
ψ = ⌊(M − 1)/2⌋, to represent negative values. This is achieved by reas-
signing the values in between (0,ψ] to bepositive, 0 tobe zero, and the
numbers in between (ψ, 2ψ] to be negative (i.e., [ −ψ, 0)). Then, the
values can be recovered uniquely by using CRT with a slight mod-
ification:

A=

Pn
i= 1

jaiMiTijM , if
Pn
i= 1

jaiMiTijM ≤ψ

Pn
i = 1

jaiMiTijM �M, otherwise:

8>>><>>>: ð9Þ

Data converter energy estimation
The DAC and ADC energy numbers in Fig. 6a, b are estimated by using
equations formulated by Murmann19,42. The energy consumption of a
DAC per b-bit conversion is

EDAC =b
2CuV

2
DD, ð10Þ

whereCu =0.5 fF is a typical unit capacitance andVDD = 1 V is the supply
voltage19. The energy consumption of an ADC per b-bit conversion can
be estimated as

EADC = k1b+ k24
b: ð11Þ

For calculating the coefficients k1 and k2, we used the data from
the ADC survey collected by Murmann42. The dataset includes all ADC
literature published in the two main venues of the field, the Interna-
tional Solid-State Circuits Conference (ISSCC) and the VLSI Circuit
Symposium, between the years 1997 and 2023. We removed the data
points with a sampling frequency lower than 1GHz as our design
requires high-speed data converters. k1 is calculated as the average of
the three samples with the smallest EADC/b and k2 as the average of the
three samples with the smallest EADC/4b among the available data
points42.
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Accuracy modeling
Both RNS-based and regular fixed-point analog cores are modeled
using PyTorch for estimating inference and training accuracy. Con-
volution, linear, and batched matrix multiplication (BMM) layers are
performed as GEMM operations which are computed tile-by-tile as a
set of tiled-MVMoperations, given the tile size of the analog core. Each
input, weight, and output tiles are quantized according to the desired
bit precision.

Before quantization, the input vectors and weight tiles are first
dynamically scaled at runtime, to mitigate the quantization effects as
follows: For an h × h weight tileWt , we denote each row vector asWrt

where the subscript r stands for the row and t for the tile. Similarly, an
input vector of length h is denoted asX t where t indicates the tile. Each
weight row Wrt shares a single FP32 scale swrt = maxðjWrt jÞ and each
input vector X t shares a single FP32 scale sxt = maxðjX t jÞ. h scales per
h × hweight tile and one scale per input vector, in total h + 1 scales, are
stored for each tiled-MVM operation. The tiled MVM is performed
between the scaled weight and input vectors, cWrt =Wrt=s

w
rt andbX t =X t=s

x
t , respectively, to produce bYrt =cWrt

bX t . Theoutput bYrt is then
quantized (if required) to resemble the output ADCs and multiplied
back with the appropriate scales so that the actual output elements
Yrt = bYrt � swrt � sxt are obtained.

Here, the methodology is the same for RNS-based and regular
fixed-point cores. For the RNS-based case, in addition to the descrip-
tion above, the quantized input andweight integers are converted into
the RNS space before the tiled-MVM operations. MVMs are performed
separately for each set of residues and are followed by a modulo
operation before the quantization step. The output residues for each
tiled MVM are converted back to the standard representation using
the CRT.

To accurately model the quantization during forward and back-
ward passes, all GEMM operations (i.e., convolution, linear, and BMM
layers) are sandwiched between an input operation Oin and an output
operationOout. Thismakes the operation orderOin-GEMM-Oout during
the forward pass, and Oout-GEMM-Oin in the backward pass. Oin

quantizes the input andweight tensors in the forward pass and is a null
operation in the backward pass. In contrast, Oout is a null operation in
the forward pass and quantizes the activation gradients in the back-
ward pass. In this way, the quantization is always performed before the
GEMM operation. The optimizer (i.e., SGD or Adam) is modified to
keep a copy of the FP32 weights to use during the weight updates.
Before each forward pass, the FP32 weights are copied and stored.
After the forward pass, the quantized model weights are replaced by
the previously stored FP32weights before the step function so that the
weight updates are performed in FP32. After the weight update, the
model parameters are quantized again for the next forward pass. This
high-precision weight update step is crucial for achieving high accu-
racy in training.

We trained ResNet-50 from scratch by using SGDoptimizer for 90
epochs with a momentum of 0.9 and a learning rate starting from 0.1.
The learning rate was scaled down by 10 at epochs 30, 60, and 80. We
fine-tuned BERT-Large and OPT-125M from the implementations
available in the Huggingface transformers repository43. We used the
Adam optimizer for both models with the default settings. The script
uses a linear learning rate scheduler. The learning rate starts at 3e −05
and 5e −05 and themodels are trained for 2 and 3 epochs, respectively
for BERT-Large and OPT-125M.

Error distribution in the RRNS code space
For anRRNS(n + k, n)withnnon-redundantmoduli, i.e., fðm1,m2,:::,mng
and k redundant moduli, i.e., {mn+1,mn+2, . . . ,mn+k}, the probability
distributions, i.e., pc, pd, and pu, of different types of errors, i.e., Case 1,
Case 2, and Case 3 that were mentioned in the RRNS for Fault Toler-
ance subsection are related to the Hamming distance distribution of
the RRNS code space. In anRRNS(n + k, n), every integer is represented

as n + k residues (ri where i∈ {1, . . . , n + k}) and this vector of n + k
residues is considered as an RRNS codeword. A Hamming distance of
η∈ {0, 1, . . . , n + k} between the original codeword and the erroneous
codeword indicates that η out of n + k residues are erroneous. The
erroneous codewords create a new vector space of n + k-long vectors
where at least one ri is replaced with r0i≠ri with i∈ {1, . . . , n + k} and
r0i<mi. This vector space includes all the RRNS(n + k, n) codewords as
well as other possible n + k-long vectors that do not overlap with any
codeword in the RRNS code space. A vector represents a codeword
and is in the RRNS code space if and only if it can be converted into a
value within the legitimate range 0,M½ Þ of the RRNS(n + k, n) by using
the CRT. The number of all vectors that have a Hamming distance η
from a codeword in RRNS(n + k, n) can be expressed as

Vη =
X

Q
n+ k

η

� �Yη
i= 1

ðmi � 1Þ,
ð12Þ

where Q n+ k
η

� �
represents one selection of η moduli from n + k

moduli while
P

Q
n+ k
η

� � represents the summation over all distinct

n+ k
η

� �
selections. The number of codewords that are in the RNS

code space with a Hamming distance of η∈ {0, 1, . . . , n + k} can be
expressed as

Dη =
Xη�1�k

h=0

ð�1Þh n+ k � η +h

n+ k � η

� �
ζ ðn + k,η� hÞ, ð13Þ

for k + 1 ≤ η ≤ n + k. For 1 ≤ η ≤ k, Dη =0 and D0 = 1. ζ(n + k, η) represents
the total number of non-zero common divisors in the legitimate range
[0,M) for any n + k − η moduli out of the n + k moduli of the
RRNS(n + k, n) code and can be denoted as

ζ ðn+ k,ηÞ=
X

Q
n+ k

n+ k � η

� � M � 1
mi1

mi2
:::miðn+ k�ηÞ

$ %
,

ð14Þ

where ðmi1
,mi2

,:::,miλ
Þ with 1 ≤ λ ≤ n + k is a subset of the RRNS(n + k, n)

moduli set.
An undetectable error occurs only if a codeword with errors

overlaps with another codeword in the same RRNS space. Given the
distance distributions for the vector spaceV and the codespaceD (Eqs.
(12), (13), respectively), the probability of observing an undetectable
error (pu) for RRNS(n + k, n) can be computed as

pu =
Xn + k

η= k + 1

Dη

Vη
pE ðηÞ, ð15Þ

where pE(η) is the probability of having η erroneous residues in a
codeword which can be calculated as

pE ðηÞ=
X

Q
n + k

η

� �pηð1� pÞðn+ k�ηÞ,
ð16Þ

for a given error probability in a single residue, p.
Eq. (13) indicates that for up to η = k erroneous residues Dη =0,

and so an erroneous codeword cannot overlapwith another codeword
in the RRNS code space. This guarantees the successful detection of
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the observed error. If the Hamming distance of the erroneous code-
word is η≤ bk2c, the error can be corrected by the majority logic
decoding mechanism. In other words, the probability of observing a
correctable error is equal to observing less or equal to bk2c errors in the
residues and can be calculated as

pc =
Xbk2c
η=0

pE ðηÞ=
Xbk2c
η=0

X
Q

n + k

η

� �pηð1� pÞðn+ k�ηÞ

0BBBBB@

1CCCCCA: ð17Þ

All the errors that do not fall under the undetectable or correctable
categories are referred to as detectable but not correctable errors with
a probability pd where pd = 1 − (pc + pd). The equations in this section
were collected from the work conducted by Yang27.

Tomodel the error in the RNS core for the analysis shown in Fig. 5,
pc,pd, and pu are computed for a givenRRNS(n + k, n) and p value using
Eqs. (15) and (17). Given the number of error correction attempts, perr is
calculated according to Eq. (8). Random noise is injected at the output
of every tiled-MVM operation using a Bernoulli distribution with a
probability of perr.

Noise analysis
In analog hardware, both shot noise and thermal noise can bemodeled

as Gaussian distributions, i.e., Ishot ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qeΔf Iout

p N ð0,1Þ where qe is the
elementary charge,Δf is the bandwidth, Iout is the output current of the

analog dot product and Ithermal ∼
ffiffiffiffiffiffiffiffiffiffiffiffi
4kBΔf T
RTIA

q
N ð0,1Þ where kB is the Boltz-

mann constant, T is the temperature, and RTIA is the feedback resistor
of the transimpedance circuitry.

For a modulusm, the consecutive output residues represented in
the analog output current should be at least Iout/m apart from each
other to differentiate m distinct levels. An error occurs in the output

residue when
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2shot + I

2
thermal

q
≥ Iout=2m as the residue will be rounded

to the next integer otherwise. Therefore, the error probability in a
single residue can be calculated as

p=Pð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qeΔf Iout +

4kBΔf T
RTIA

q
N ð0,1Þ≥ Iout=2mÞ. We used Δf = 5 GHz,

T = 300 K and RTIA = 200Ω as typical values in the experiments shown
in Fig. 5g–i. For a calculated p, perr = 1 − (1−p)n for an n-moduli RNS
(k =0). For RRNS (k > 0), perr can be obtained using Fig. 4 or Eq. (8).

RNS operations
The proposed analog RNS-based approach requires modular arith-
metic, unlike conventional analog hardware. In this section, we discuss
two ways of performing modular arithmetic in the analog domain in

detail. We dive into one electrical solution using ring oscillators and
one optical solution using phase shifters.

First, let us consider a ring oscillator with N inverters. In a ring
oscillator, where each inverter has a propagation delay of tprop > 0,
there is always one inverter that has the same input and output—either
1 − 1 or 0 −0—at any given time when the ring oscillator is on. The
location of this inverter with the same input and output propagates in
the oscillator, along with the signal, every tprop time and rotates due to
the ring structure. This rotation forms a modular behavior in the ring
when the location of this inverter is tracked.

Let SRO(t) be the state of a ring oscillator where
SRO(t)∈ {0, . . . ,N − 1} and SRO(s) = s means that the s + 1-th inverter’s
input and output have the same value at time t. SRO(t) keeps rotating
between 0 toN − 1 as long as the oscillator is on. Fig. 7a shows a simple
example where N = 3. In the first tprop time interval, the input and
output of the first inverter are both 0, therefore, the state
SRO(t < tprop) = 0. Similarly, when tprop < t < 2tprop, the input and output
of the second inverter are 1, so SRO(tprop < t < 2tprop) = 1. Here, the time
between two states following one another (i.e., tprop) is fixed and SRO(t)
rotates (0, 1, 2, 0, 1, . . . ). Assume the state of the ring oscillator is
sampled periodically with a sampling period of Ts =A ⋅ tprop. Then, the
observed change in the state of the ring oscillator between two sam-
ples (SRO(t = Ts) − SRO(t =0)) is equivalent to ∣A∣N where A is a positive
integer value. Therefore, to perform modulo with a modulus value m,
the number of inverters N should be equal tom. The dividend number
A and the sampling period can be adjusted by changing the analog
input voltage to a voltage-to-time converter (VTC).

Here, the dot products can be performed using traditional
methods with no change and with any desired analog technology
where the output can be represented as an analog electrical signal
(e.g., current or voltage) before the analogmodulo. The ring oscillator
is added to the hardware where the dividend A is the output of the dot
product. Here, the total energy consumption of the analog modulo
operation depends onA and the area footprint depends onm. The ring
oscillator typically has a quite smaller energy consumption and area
footprint than the other components in the system such as ADCs.

Second, let us consider a typical dual-rail phase shifter. The
amount of phase shift introduced by the phase shifter when v and − v
voltages are applied on the upper and the bottomarms, respectively, is

ΔΦ =
vL

Vπ�cm
, ð18Þ

where Vπ⋅cm is the modulation efficiency of the phase shifter and is a
constant value. ΔΦ is then proportional to both the length of the
shifter L and the amount of applied voltage v. Figure 7b shows an
example modular dot product operation between two vectors, x and
w, using cascaded dual-rail phase shifters. This idea is similar to multi-
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Fig. 7 | Analogmodulo implementations. aModulo operation performed using a
ring oscillator. A ring oscillator with N = 3 inverters is shown to perform modulo
against a modulus m = 3 as an example. b Modular dot product performed using
cascaded phase shifters. A modular dot product operation between two 2-element

vectors x and w, each with 3 digits, is shown in a dual-rail setup. The transistor
switch turns on and supplies voltage to the phase shifter when the corresponding
digit of w is 1 and it turns off when the corresponding digit of w is 0.
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operand MZIs44 in which there are multiple active phase shifters
controlled by independent signals on each modulation arm. Differ-
ently, here, w is encoded digit-by-digit using phase shifters with
lengths proportional to 2j where j represents the binary digit number.
In the example, each element (i.e.,w0 andw1) of the 2-element vectorw
consists of 3 digits and uses 3 phase shifters, each with lengths
L, 2L, and 4L. If the j-th digit of the i-th element ofw,wj

i = 1, a voltage vi
is applied to the phase shifter pair (top andbottom)with the length 2jL.
If the digit wj

i =0, then no voltage is applied, and therefore, no phase
shift is introduced to the input signal. To encode the second operand
x, a voltage vi that is proportional to xi is applied to all non-zero digits
of wi. The multiplication result is then stored in the phase of the
propagating signal through the phase shifters, which is modular with
2π. To performmodulo with an arbitrarymodulusm instead of 2π, the
applied voltage v should be multiplied by the constant 2π/m. For
encoding an input integer xi,

vi = xi �
Vπ�cm
πL

� 2π
m

, ð19Þ

should be applied so that the total phase shift at the end of the optical
path is

ΔΦtotal =
2π
m

X
i

X
j
ð2jwj

iÞxi
� ������

�����
2π

=
2π
m

X
i
ðwixiÞ

��� ���
m
: ð20Þ

The resulting output values in the optical phase are collected at the
end of the optical path. These outputs are then re-multiplied bym/2π
to obtain the outputs of the modular dot products for each modulus.

In the example in Fig. 7b, w is a digital number encoded digit-by-
digit to control the phase shifters separately, while x is encoded via an
analog voltage v. Ideally, the pre-trained w (for inference) can be
programmed onto the photonic devices once and kept fixed for mul-
tiple inferences. However, today’s DNN with millions to billions of
parameters makes it impossible to map a whole DNN onto a single
accelerator. Therefore, although DNN parameters are not calculated
during runtime, w has to be tiled into smaller pieces and loaded into
the photonic devices tile by tile. Additionally,modern neural networks
that use attention modules require multiplications between matrices
that cannot be pre-computed. As a result, both x and w are stored as
digital values in the memory before the operations. To this end, the
order of these variables can be easily exchanged, i.e., x can be pro-
grammed digit-by-digit and w can be used as an analog value or
vice versa.

In this approach, the total length of the phase shifter on each arm
depends on m and the vector size h. Therefore, achieving a feasible
design requires a careful selection of the moduli set and the devices
used in the design. During an RNS multiplication with modulus m
where both x and w are smaller than m, the maximum multiplication
result is (m−1)2 which can be mapped around zero as
½�bðm�1Þ2

2 c,dðm�1Þ2
2 e�. For amodular dot product unit with h elements, the

range of the phase shift that the unit can introduce must be within
½�ΔΦmax,ΔΦmax�= ½�dðm�1Þ2

2 e 2π
m h,dðm�1Þ2

2 e 2π
m h�, when the maximum bias

voltage vmax is applied. This requires a total phase shifter length that
grows with O(mh) in the dot product unit.

Here, the unit phase shifter length L that creates 2π
m phase shift is

determined by the Vπ⋅cm of the phase shifter and the maximum bias
voltage (vmax). Essentially, a low Vπ⋅cm and high vmax results in a short
device length for the required phase shift. For high-speed phase shif-
ters with modulation bandwidths ≥1 GHz, the most commonly used
actuation mechanisms rely on plasma dispersion. For such phase
shifters, prior work demonstrated Vπ⋅cm values lower than 0.5
V ⋅ cm45–49 and optical losses less than 1 dB/cm50,51.

To determine the total length in this RNS-based approach, the
required RNS range (depending on the input precision and vector size)

and the corresponding moduli choice are also critical. A moduli set
with fewer but larger values requires fewer but longer dot product
units, while a moduli set with more but smaller moduli results in many
but shorter dot product units. To quantify, an example moduli set
{5, 7, 8, 9, 11, 13} can achieve a dynamic range of more than 17 bits-
which allows 6-bit arithmetic up to h = 90. When a phase shifter with
0.032 V ⋅ cm modulation efficiency at 2.8 V is used48, the phase shifter
length varies between0.3–1.2mm(permultiplier) for differentmoduli.
With a typical devicewidth of 25μm, an array size of 64 × 64 (six arrays
in total, one 64 × 64 array for each modulus in the abovementioned
moduli set) can fit in a typical chip size of 500mm2. This approach is
less area efficient and results in higher optical loss per MAC operation
compared to a traditional MZI array due to the relatively long phase
shifter lengths and utilization of multiple MVM arrays. However, this
approach is feasible and it allows us to use lower-precision optical
channels (2-to-4-bit for the example above), which can tolerate higher
optical loss than even a typical 8-bit photonic hardware while achiev-
ing a much higher precision at the output (~17-bit). An equivalent
precision requires 217 differentiable analog levels at the output of the
optical MAC operations and 17-bit ADCs, which is impractical in tra-
ditional photonic cores with today’s technology (See Fig. 6a).

The scalability of the RNS-based approach can further improve
with the developments in photonics technology. Developing high-
bandwidth phase shifters with low Vπ⋅cm and low optical loss is still an
active research area. Integration of new materials, e.g., (silicon-)
germanium52, ferroelectrics50,53, III-V semiconductors49, 2D materials54,
and organicmaterials48, provide promising results despite still being in
very early stages. With these integration technologies maturing, more
performant silicon photonics phase shifters can enable better area
efficiency. In addition, using 3D integration to stack up photonic chi-
plets (e.g., photonic arrays for different moduli can be implemented
on different layers) can further reduce the area footprint in such
designs.

Extended RNS
By combining RNS and PNS, an integer value Z can be represented asD
separate digits, zd where d∈ {0, 1, . . . ,D − 1} and 0 ≤ zd <M:

Z =
XD�1

d =0

zdM, ð21Þ

and can provide up to Dlog2M bit precision. This hybrid scheme
requires carry propagation from lower digits to higher digits, unlike
theRNS-only scheme. For this purpose, one can use twosets ofmoduli,
primary and secondary, where every operation is performed for both
sets of residues. After every operation, overflow is detected for each
digit and carried over to the next higher-order digit.

Let us define and pick np primary moduli mi where i∈ {1, . . . , np}
and ns secondary moduli mj where j∈ {1, . . . , ns}, and mi ≠mj∀ {i, j}.
Here M =Mp �Ms =

Qnp

i = 1 mi �
Qns

j = 1 mj is large enough to represent the
largest possible output of the operations performed in this numeral
representation and Mp and Ms are co-prime.

In this hybrid number system, operations for each digit are
independent of one another and can be parallelized except for the
overflow detection and carry propagation. Assume zd = zd∣p;s consists
of primary and secondary residues and is a calculated output digit of
an operation before overflow detection. zd can be decomposed as
zd∣p =Qd∣pMp +Rd∣p where Qd∣p and Rd∣p are the quotient and the
remainder of the digit, with respect to the primary RNS. To detect a
potential overflow in the digit zd, a base extension from primary to
secondary RNS is performed on zd∣p and the base extended residues
are compared with the original secondary residues of the digit, zd∣s. If
the residues are the same, this indicates that there is no overflow, i.e.,
Qd∣p;s = 0, and both primary and secondary residues are kept without
any carry moved to the next higher digit. In contrast, if the base-
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extended secondary residues and the original secondary residues are
not the same, there exists an overflow (i.e., Qd∣p;s ≠0). In the case of
overflow, the remainder of the secondary RNS, Rd∣s, is calculated
through a base extension from primary to secondary RNS on Rd∣p
where Rd∣p = zd∣p. Qd∣s can then be computed as Qd js = ðzd js � Rd jsÞM�1

p
where jMp �M�1

p jMs
� 1.Qd∣p is calculated through base extension from

the secondary to primary RNS on the computedQd∣s. The full quotient
Qd∣p;s is then propagated to the higher-order digit.

Algorithm 1 shows the pseudo-code for handling an operation □
using the extendedRNS representation. Theoperation canbe replaced
by any operation that is closed under RNS. It should be noted that zd∣p;s
cannot always be computed as xd∣p;s □ yd∣p;s. For operations such as
addition, each digit before carry propagation is computed by simply
adding the same digits of the operands, i.e., zd∣p;s = xd∣p;s + yd∣p;s. How-
ever, for multiplication, each digit of zd∣p;s should be constructed as in
long multiplication. The multiplication of two numbers in the hybrid
number system with Dx and Dy digits requires DxDy digit-wise multi-
plications and the output will result in Dz =Dx +Dy digits in total.
Similarly, a dot product is a combination of multiply and add opera-
tions. If two vectors with h elements where each element hasDx andDy

digits, the output will require in Dz =Dx +Dy + log2h digits.

Algorithm 1. Pseudocode for performing a □ operation using the
hybrid number system. Here, x and y are the input operands of □. zd
represents the digits of the output where d∈ {1, . . . ,Dz}, zd∣p are the
primary residues, and zd∣s are the secondary residues. Primary and
secondary residues together are referred to as zd

0jp;s.Q is the quotient
and R is the remainder where zd =QdMp +Rd p2s() and s2p() refer to
base extension algorithms from primary to secondary residues and
from secondary to primary residues, respectively.

Q−1∣p;s = 0
for d in (0,Dz) do

zd
0jp;s = ðxjp;s&yjp;sÞ d

end for
for d in (0,Dz) do

zd jp;s = zd 0jp;s +Qd�1jp;s
Rd∣p = zd∣p
Rd∣s = p2s(Rd∣p)
if Rd js = zd 0js then

Qd∣p;s = 0
else

Qd js = ðzd 0js � Rd jsÞM�1
p

Qd∣p = s2p(Qd∣s)
end if

end for

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the plots within this paper and other findings of
this study are proprietary to Lightmatter and available under restricted
access; access can be obtained from the corresponding authors upon
request.

Code availability
The code that supports the plots within this paper and other findings
of this study are proprietary to Lightmatter and available under
restricted access; access can be obtained from the corresponding
authors upon request.
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