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Abstract—Fully homomorphic encryption (FHE) is a cryptographic
technology with the potential to revolutionize data privacy by enabling
computation on encrypted data. Lately, the CKKS FHE scheme has
become quite popular because it can process real numbers. However,
CKKS computing is not pervasive yet because it is resource-intensive
both in terms of compute and memory, and is multiple orders
of magnitude slower than computing on unencrypted data. The
recent algorithmic and hardware optimizations to accelerate CKKS
computing are promising, but CKKS computing continues to
underperform due to an expensive operation known as bootstrapping.
While there have been several efforts to accelerate bootstrapping,
it continues to remain the main performance bottleneck. One of
the reasons for this performance bottleneck is that unlike the non-
bootstrapping parts of CKKS computing the bootstrapping algorithm
is inherently sequential and exhibits interdependencies among the data.

To address this challenge, in this paper, we introduce HEAP an
accelerator that uses a hybrid scheme-switching approach. HEAP
uses the CKKS scheme for the non-bootstrapping steps, but switches
to the TFHE scheme when performing the bootstrapping step of the
CKKS scheme. The hybrid approach transitions to the TFHE scheme
by extracting coefficients from a single RLWE ciphertext to represent
multiple LWE ciphertexts. We incorporate the bootstrapping function
into the TFHE BlindRotate operation and simultaneously apply
the BlindRotate operation to all LWE ciphertexts. A parallelized
execution of bootstrapping is then feasible because there are no data
dependencies between distinct LWE ciphertexts. With our approach,
we require smaller-sized bootstrapping keys leading to about 18×
less amount of data to be read from the main memory for the keys. In
addition, we introduce a variety of hardware optimizations in HEAP—
from modular arithmetic level to NTT and BlindRotate datapath
optimizations. The approach in HEAP is agnostic of the hardware and
can be mapped to any system with multiple compute nodes. To evaluate
HEAP, we implemented it in RTL and mapped it to a single FPGA
system and an eight-FPGA system. Our comprehensive evaluation of
HEAP for the bootstrapping operation shows a 15.39× improvement
when compared to FAB. Similarly, evaluation of HEAP for the logistic
regression model training shows 14.71× and 11.57× improvement
when compared to FAB and FAB-2 implementations, respectively.

Index Terms—CKKS, TFHE, scheme switching, bootstrapping,
FPGA acceleration

I. INTRODUCTION
With the growing dependence on large-scale data to make

business decisions, businesses are commonly using cloud services
to process their data. As a result, cloud environments have become
attractive targets for attacks. Data breaches during processing
have become quite common these days. In fact, in 2022 alone
there were more than 1800 data breaches in the cloud during data
processing [32]. So there is a critical need to provide data security
and privacy in the cloud when processing the data.

Over the past decade, fully homomorphic encryption (FHE)
[24] has emerged as one of the plausible ways to enforce privacy
during processing by enabling computing on encrypted data. Even
though FHE provides strong data privacy guarantees, it is not yet

widely adopted. This is because computing on encrypted data using
FHE is inherently slow due to its compute and memory-intensive
nature [21], [27], [54]. This is true irrespective of the FHE
scheme [9], [15], [16], [26] used in practice.

Out of the currently available FHE schemes, the CKKS FHE
scheme can handle computations on real numbers. Given the
extensive use of real numbers in machine learning training and
inference and the pervasiveness of machine learning (ML)-based
applications today and in the foreseeable future, the CKKS scheme
is currently the most popular. While the CKKS scheme can support
the “deep” ML models, to be able to do that we need to perform
an expensive operation known as bootstrapping. This bootstrapping
operation, depending upon the scheme parameters, can take several
seconds to several minutes [27].

While all the recent algorithmic [1], [10], [30], software [6],
[34], [51], and hardware [2], [36]–[38], [49], [50] optimizations
to the CKKS primitive and bootstrapping operations have helped
reduce the bootstrapping execution time, bootstrapping still remains
a performance bottleneck as it consumes up to 95% of the total
application execution time [34], [36]. This underscores the critical
need for accelerating bootstrapping. The state-of-the-art CKKS
bootstrapping algorithm is inherently serial and does not scale well
to multiple CPUs/GPUs/FPGAs with all the data dependencies
within a single RLWE ciphertext. One of the recent works FAB [2]
observed only 20% improvement in application performance
when mapping the solution to multiple FPGAs. The performance
improvement was limited by the bootstrapping implementation,
which could not be parallelized.

In this work, we propose HEAP which uses a hybrid scheme-
switching approach that uses a combination of CKKS and TFHE
schemes. The core idea is to perform the non-bootstrapping
operations using the CKKS primitives and switch to the TFHE
scheme to perform the CKKS bootstrapping operation. In the case
of a conventional CKKS bootstrapping algorithm, it is necessary to
work with large parameter sets, typically ranging from N=215 to
N =217. This ensures that there are a sufficient number of limbs
(typically 17 to 19 limbs) available to perform bootstrapping itself
as well as perform application operations. If one were to use small
parameters such as N=213, there would not be a sufficient number
of limbs to complete the bootstrapping process itself. Consequently,
supporting any real-world practical applications is infeasible with
smaller N and logQ parameters. Our scheme-switching approach
for CKKS bootstrapping utilizes only a single limb during the boot-
strapping process. Therefore, with our approach, real-world practical
applications are feasible using small parameters such as N=213.

Our scheme-switching approach to perform the CKKS bootstrap-
ping also enables parallelization of the bootstrapping operation. Par-



allelism during bootstrapping is introduced by the fact that a single
RLWE ciphertext can be represented using multiple LWE cipher-
texts in the TFHE scheme. The bootstrapping function is embedded
within the BlindRotate operation in TFHE, which operates on
distinct LWE ciphertexts in parallel, and can be spread across mul-
tiple compute platforms. This parallel execution is feasible because
there is no data dependency between the distinct LWE ciphertexts.
The resultant ciphertexts from these BlindRotate operations are
accumulated into a single RLWE ciphertext by streaming results
from several compute platforms to a single compute platform.

To facilitate this hybrid strategy, in addition to all the primitive
CKKS operations, we implement Extract (short for sample extrac-
tion), ModulusSwitch, and BlindRotate TFHE operations.
We propose several novel microarchitecture-level optimizations
at a fine-grain modular arithmetic level to NTT datapath and
BlindRotate datapath, which reduce the on-chip memory
requirements and the number of memory transfers. Moreover,
through our optimized ExternalProduct operation scheduling,
we extract as much parallelism as possible in the BlindRotate
operation. In addition to the benefits of parallelizing bootstrapping,
our hybrid scheme-switching offers benefits in terms of support
for smaller parameter sets while enabling bootstrapping operation.
Furthermore, as our bootstrapping utilizes only a single level,
the selected parameter set allows for less frequent bootstrapping,
resulting in further performance enhancements. Moreover, we
require smaller-sized bootstrapping keys leading to about 18× less
amount of data to be read from the main memory for the keys.

In particular, we make the following contributions:

• We propose HEAP, a multi-compute platform scalable
bootstrapping accelerator that parallelizes CKKS bootstrapping
operation by using a hybrid scheme-switching approach. To
the best of our knowledge, HEAP is the first accelerator to
implement a hybrid scheme-switching approach.

• In HEAP we use low-latency tightly coupled functional
units with fine-grained pipelining. We optimize the NTT
and BlindRotate datapath to enable parallel scheduling
of operations while reducing the data accesses from the
main memory. The configuration of our on-chip memory
complements the implementation of functional units and the
optimization of the datapath.

The approach in HEAP is agnostic of the hardware and can be
mapped to a multi-CPU, multi-GPU, multi-FPGA, or multi-ASIC
system. However, following the FAB work which suggests that
FPGA provides a sweet spot for FHE acceleration, we map HEAP
onto a single-FPGA and an eight-FPGA system. On average
HEAP performs bootstrapping 3283×, 12.7×, 4×, and 15.39×
faster than existing state-of-the-art CPU, GPU, ASIC, and FPGA
implementations. We evaluate two applications including logistic
regression (LR) model training and ResNet-20 inference utilizing
this hybrid methodology for bootstrapping. HEAP performs on
average 5293×, 59.35×, 37.8×, and 13.14× faster LR model
training than existing state-of-the-art CPU, GPU, ASIC, and
FPGA implementations. Similarly, HEAP performs on average
39708×, 3.7×, and 1.2× faster ResNet-20 inference than existing
state-of-the-art CPU, GPU, and ASIC implementations.

TABLE I
NOTATIONS USED IN THIS PAPER.

Symbols Description
−→a ,

−→
b Denotes two vectors a and b.

⟨−→a ,
−→
b ⟩ Denotes the inner product of vectors a and b.

N Denotes the ring dimension and a value of power of two.
n Denotes the number of plaintext elements in a ciphertext.

Maximum possible value is N/2.
nt Denotes LWE mask and the value ranges from 256-4096.
Q Denotes the full modulus of ciphertext
q Denotes a limb of Q, and is typically a machine

word-sized prime number.
p Denotes additional limb in raised basis, and is typically a

machine word-sized prime number.
∆ Denotes scale factor of CKKS plaintext, and takes a

value close to the limb of a ciphertext.
R Denotes a 2Nth cyclotomic ring, R=Z[X]/(XN+1).
RQ Denotes a quotient ring, RQ=R/QR.
L Denotes maximum number of limbs in a ciphertext.
a Denotes a ring element, a=a(X)

a=a0+a1.X+···+aN−1.X
N−1∈R.

II. BACKGROUND
In this section, we present a brief mathematical background on

the two FHE schemes: CKKS and TFHE, along with the approach
to switch between the two schemes. The security of both the FHE
schemes is based on a hard lattice problem called Learning With
Errors (LWE), and its variant, such as Ring LWE (RLWE) [42].
Note that in this work, we do not use sparse secret keys as there are
security concerns with using sparse keys [14], [52]. The notations
used throughout the paper are listed in Table I.

A. The CKKS Scheme
The CKKS scheme is an approximate homomorphic encryption

scheme where plaintext is a vector of length n with each entry
chosen from a field of complex numbers C. Before a message
is encoded into a plaintext vector, it is scaled by a scale factor
∆ to preserve as many precision bits as possible. The encryption
of a plaintext m results in a ciphertext ct = (a,b), which is an
RLWE ciphertext consisting of a pair of polynomials in RQ. The
coefficients of these polynomials are elements of ZQ. Hereafter,
throughout the paper, we denote the CKKS ciphertext by the
notation ctR indicating an RLWE ciphertext.

The precision of Q can range from hundreds to thousands of
bits depending upon the use case. Unfortunately, it is impractical
to perform operations on such large coefficients using today’s
computing systems that typically have word sizes of 64-bit or lower.
Therefore, the polynomials are decomposed into an equivalent
representation using a residue number system (RNS). The smaller
polynomials have machine word-sized coefficients modulo each
of the qi and each of these polynomials is known as a limb of
ciphertext with respect to smaller modulus q such that Q=

∏L−1
i=0 qi.

This allows us to perform addition and multiplication over ZQ

using standard machine words.
All addition and multiplication operations on these polynomials

involve scalar modular additions and scalar modular multiplications.
Current commercially available computing platforms do not
inherently support these modular operations. Furthermore,
computing modular reduction requires performing an expensive
division operation. Hence, optimizing modular arithmetic operations



holds substantial importance in enhancing the overall computational
efficiency of CKKS computing.

Polynomial multiplications can be efficiently performed using
number theoretic transform (NTT). By default, CKKS assumes
ciphertext polynomials to be in the NTT domain (also referred to
as the evaluation representation). Whenever any operation requires
ciphertext to be in coefficient representation, an inverse NTT
(iNTT) operation is performed to transform the ciphertext from
evaluation to coefficient domain. The addition of two polynomials
and multiplication of a polynomial by a scalar is O(N) in both
coefficient and evaluation representation. However, this conversion
between NTT and iNTT domain takes O(N logN) time and O(N)
space for our degree N−1 polynomials.

The CKKS scheme consists of various primitive operations
including PtAdd, Add, PtMult, Mult, Rotate, and
Conjugate. For further details on these individual primitive
operations, interested readers can refer to [12], [15], [21]. As
mentioned in Table I, the scale factor is the size of one of the limbs of
the ciphertext. DuringPtMult andMult, when the homomorphic
multiplications are performed, the underlying scale factor ∆ also
gets multiplied and becomes ∆2. Therefore, the scale factor must
be shrunk down to ∆ by performing a Rescale operation.

This Rescale operation approximates the division by ∆ and
rounds the result to the nearest integer. Even when the Rescale
operation helps keep the scale factor roughly the same throughout
the computation, it shrinks the ciphertext modulus. Therefore, if
a ciphertext begins with L limbs, only L−1 multiplications are
feasible due to the reduction in the ciphertext modulus by a count of
limbs equivalent to the circuit’s multiplicative depth being homomor-
phically evaluated. Once the multiplicative depth is fully utilized, an
operation known as bootstrapping [24] becomes necessary.

Bootstrapping operation refreshes the noise in a ciphertext by
homomorphically re-encrypting the ciphertext after removing
the noise. Bootstrapping is the most expensive operation and
hence the bottleneck when evaluating FHE applications, especially
applications that implement a deep circuit. Therefore, there is a
need to accelerate the bootstrapping operation.

B. The TFHE Scheme
The TFHE scheme was initially proposed as an improvement

of the FHEW scheme, and then it started developing in a broader
direction to cover a wider range of applications. It differs from the
CKKS scheme in terms of bootstrapping. TFHE performs a special
bootstrapping, which is able to evaluate a function at the same time
as it reduces the noise. For positive integers q and nt, basic LWE en-
cryption of m∈Z under the secret key −→s ∈χkey is given as follows:

ct=(−→a ,b)=(−→a ,−⟨−→a ,−→s ⟩+e+m)∈Z(nt+1)
q (1)

Here, −→a ∈Znt
q and error e∈χerr. Hereafter, throughout the paper,

we denote the TFHE ciphertext by the notation ctL indicating an
LWE ciphertext. In addition to LWE, TFHE uses several other
ciphertext formats that we briefly discuss below. RLWE ciphertext
of TFHE follows the same format as the CKKS RLWE ciphertext
and Ring GSW (RGSW) ciphertext can be simply viewed as a
two-dimensional matrix of RLWE ciphertexts.

GLWE1 ciphertext is represented as a vector of (h+1) polynomi-
als each with a degree N−1, where each polynomial is represented
as a vector of N integers. Here, h is the GLWE mask and typically
takes a value between 1 to 4. The univariate function that is evaluated
as part of the BlindRotate operation is stored using this GLWE
format. The BlindRotate keys (brk) is a vector of nt RGSW ci-
phertexts, where each GGSW2 ciphertext is a (h+1)·d×(h+1)ma-
trix of degree N−1 polynomials. Here, d is the decomposition de-
gree similar to the decomposition number in the CKKS scheme. We
set this value to 2 both for the CKKS and the TFHE scheme. The key
switching key is a vector of h·N ·d LWE ciphertexts. Although the
TFHE scheme comprises many operations, the ModulusSwitch,
BlindRotate, and Extract operations are of interest to us in
this work. During ModulusSwitch, each element in LWE is
switched from the modulus q to the modulus 2N . This operation is
not expensive to perform as N is always a power-of-two number.

The steps in BlindRotate operation are described in
Algorithm 1 [16]. BlindRotate transforms a single LWE
ciphertext into an RLWE encryption of f · Xa. The result
is accumulated into the RLWE ciphertext that is denoted as
ACC. The public keys required for BlindRotate are given by
brk = {RGSW(s+i ),RGSW(s−i )}i∈[0,N−1]. These brk public
keys can be computed offline and must be generated in advance.
For all n LWE ciphertexts, we iteratively compute ACC using the
equation in step 3. The result of the BlindRotate operation is
an RLWE ciphertext ct(f ·Xa). The polynomial af has a as its
constant term. After BlindRotate, we get n RLWE ciphertexts
that encrypt polynomials a(i) where only the constant coefficient of
the encrypted polynomials contains useful information. Therefore,
as a final step, we combine all constant coefficients of encryption
of a(i) into a single encrypted polynomial without decryption.
Chen et al. [11] proposed an efficient repacking technique using
an automorph operation that we adopt in HEAP.
Extract works by extracting a specific coefficient (the constant

term) from the RLWE ciphertext polynomial to form the new LWE
ciphertext. Through Extract, we get ctL=(−→a (i),bi) encrypted
under −→s =(s0,...,sN−1) for all i∈ [0,N−1] from a∈ctR where

−→a (i)=(ai,ai−1,...,a0,−aN−1,−aN−2,...,−ai+1) (2)

This operation typically follows the BlindRotate operation to
maintain the ciphertext representation in LWE format.

III. CKKS BOOTSTRAPPING USING SCHEME-SWITCHING
In this section, we first describe how the scheme-switching ap-

proach works and then describe the modified CKKS bootstrapping

1GLWE is a generalization for both LWE and RLWE ciphertexts.
2GGSW is a generalization for RGSW ciphertexts.

Algorithm 1 BlindRotate(f , brk= {RGSW(s±i }, (−→a , b) ∈
Z2N )

1: ACC←(0,f ·Xb)
2: for (i=0; i<n; i=i+1) do
3: ACC ← ACC ∗ (RGSW(1) + (Xai − 1) · RGSW(s+i ) +

(X−ai−1)·RGSW(s−i ))
4: end for
5: return ACC



algorithm that employs this scheme-switching approach.

A. The Scheme Switching Approach
The goal of scheme switching is to take advantage of the

parallelism that is inherent to CKKS and TFHE schemes to
accelerate the different operations.

The inherent parallelism in CKKS (through RLWE ciphertext
polynomials) can be exploited to perform linear operations like
matrix-vector multiplications or convolution operations in machine
learning. However, non-linear operations like comparison, sigmoid,
exponentiation, and many others need to be evaluated using
polynomial approximation as they do not map directly to any
homomorphic operations in the CKKS scheme. Thus, the evaluation
of non-linear operations using higher-degree polynomials becomes
a bottleneck as it requires performing too many homomorphic
multiplication operations, which consumes too many limbs in the
ciphertext thereby leading to frequent bootstrapping.

Similarly, the TFHE scheme is faster at performing non-linear
operations but turns out to be expensive when performing linear
operations. So with the scheme-switching approach, we want to
integrate the best of both worlds and enable the ability to seamlessly
transition between schemes as required by a given application. The
scheme switching works by extracting LWE ciphertexts from an
RLWE ciphertext. For each extracted LWE ciphertext, we perform
the blind rotation with some initial function f . The function f can
be set as required by the application under execution. For example,
f can be set to evaluate sigmoid, exponentiation, or ReLU function.
As an output of the BlindRotate operation, we obtain RLWE
encryptions of a(i) which has a constant term of ai. We extract these
constant terms into multiple LWE ciphertexts. Finally, we repack
our RLWE encryptions of a(i) into a single RLWE encryption of a.

B. Modified CKKS Bootstrapping
Consider an RLWE ciphertext ct= (a,b) ∈R2

q in the CKKS
scheme with L RNS limbs. After performing repeated Rescale
operations, we exhaust the limbs of the ciphertext and additional
homomorphic operations can destroy the message m. Therefore, we
need to regain the lost limbs and increase the modulus to a bigger
modulus denoted by Q′. As part of the CKKS bootstrapping [12],
when the modulus is raised to Q′, an additional term k·q gets added
to the message, modifying the message to m+k·q. Here, k is some
polynomial with small integer coefficients and q is the modulus for
the input ciphertext. The primary goal of the bootstrapping operation
is to homomorphically evaluate the modular reduction operation
modulo q on this message, returning the message back to m.

As shown in Figure 1 (a), the first step of bootstrapping is a
linear transformation step that converts the ciphertext representation
from the coefficient to the evaluation domain. A polynomial
approximation of the modular reduction function helps remove the
k ·q part from the message. Then, as a last step of bootstrapping,
another linear transformation step is performed to convert
ciphertext back to evaluation representation. The challenging part
in bootstrapping is to accurately approximate the modular reduction
function. Moreover, based on the parameter set chosen for the CKKS
scheme implementation, the bootstrapping step may itself consume
anywhere from 15-19 levels, thus, leaving only a few compute levels
for the application itself and requiring more frequent bootstrapping.

SampleExtraction

RLWE Ciphertext

BlindRotate

n LWE Ciphertexts

n RLWE Ciphertexts

SampleExtraction

RePacking

n LWE Ciphertexts

RLWE Ciphertext

CoeffToSlot

RLWE Ciphertext

ModularReduction

SlotToCoeff

(a) CKKS Bootstrapping Steps

RLWE Ciphertext

(b) Modified CKKS Bootstrapping Steps

Fig. 1. The CKKS Bootstrapping; (a) Steps in state-of-the-art bootstrapping
algorithm, and (b) Steps in the modified bootstrapping algorithm.

Algorithm 2 CKKS-Bootstrapping(ct=(a,b)∈R2
q)

1: ct′←2N ·ct (mod q)∈R
2: ctms←(2N·ct−ct′

q
)∈R2N

3: ctkq←BlindRotate(Extract(ctms,q,Qp))∈RQp

4: ct′′←ctkq+ct′ (mod Qp)∈RQp

5: ctboot=Rescale( p
2N
·ct′′,p)∈RQ

6: return ctboot=(aboot,bboot)∈R2
Q

To address these challenges, we propose using the scheme-
switching approach to perform CKKS bootstrapping as shown
in Figure 1 (b). We adopt the idea proposed by Kim et al. [35]
that suggests removing the k · q part from the message through
subtraction instead of approximate modular reduction. Therefore,
in our modified CKKS bootstrapping approach using scheme-
switching, we first compute encryption of −k·q by using the blind
rotation technique in the TFHE scheme. We denote this newly
encrypted ciphertext by ctkq = (akq,bkq) ∈R2

Q and it contains
the encryption of the scaled value k ·q. Then, we add this newly
encrypted ciphertext ctkq to our original ciphertext ct to eliminate
k·q from the underlying message m.

The detailed steps of the modified bootstrapping algorithm are as
shown in Algorithm 2. We begin with an RLWE ciphertext ct. As
TFHE operates in 2N modulus domain, we first need to perform
a ModulusSwitch operation. As part of ModulusSwitch, we
first compute ct′ = 2N ·ct (mod q) to obtain ct′(s). Now both
2N ·a−[2N ·a]q and 2N ·b−[2N ·b]q are divisible by q, thus, we
obtain our modulus switched ciphertext, ctms=(ams,bms).

Then, we evaluate BlindRotate(ctms,q,Qp) and the output is
a ciphertext ctkq(s)=(akq,bkq) w.r.t. (mod Qp). Here, p is an
auxiliary prime by which we will rescale later at the end of the boot-
strapping procedure. Then, we add ctkq to ct′ modulo Qp to obtain
ct′′=2N ·m (mod Qp). To get rid of the scaling factor 2N in the
message, we multiply ct′′ by p

2N and then Rescale the result by p.

C. Parameter Set for HEAP
We briefly discuss the parameter set choices for HEAP. To

support NTT, the parameter N has to be a power of two. We
pick the value of N to be 213 to place an upper bound on the
number of RLWE ciphertexts that will be generated as part



of the BlindRotate operation. To enable 128-bit security,
the corresponding ciphertext modulus, log Q that we pick
is 216. Therefore, the size of our RLWE ciphertext will be
2×logQ×N=2×216×8192=∼0.44MB.

Now, for the RNS decomposition of our ciphertext, we pick a
value of logq = 36 for each of our RNS limbs. The size of each
RNS limb is ∼0.04MB. This gives us L = 6, implying we can
perform 5 multiplications before requiring to perform a CKKS
bootstrapping operation. The choice of 36 bits for an RNS limb
enables us to make use of fast DSP multipliers, adders, and on-chip
memory (URAM and BRAM) blocks efficiently on the underlying
FPGA. Section IV describes this in more detail. The size of each
LWE ciphertext is ∼2.3 KB with nt=500 and logq=36.

The gadget decomposition d value is set to 2 for RGSW elements.
The key in BlindRotate is a vector of nt GGSW ciphertexts,
where each ciphertext is a (h+1) ·d× (h+1) matrix of degree
N −1 polynomials. A typical value for h= 1 and thus, the size
of the key is ∼3.52 MB. We need nt =500 such keys, implying
that the total key size will be 1.76 GB to perform the entire
CKKS bootstrapping using the hybrid scheme-switching approach.
Note that the values for d and h are carefully chosen as 2 and
1, respectively. We choose these values so that we do not incur
additional memory overhead for the bootstrapping keys as the size
of the key linearly scales with these two values.

In the case of state-of-the-art CKKS bootstrapping, the size of
each key is about ∼126 MB for bootstrappable parameters. To
perform a single bootstrapping we need about 25 such keys (24
keys for rotation and 1 key for multiplication), considering the
optimized bootstrapping implementation [1]. Thus, in total, we
need to read about ∼32 GB of keys to perform the entire CKKS
bootstrapping. With our approach, we require about 18× less
amount of data to be read from the main memory just for the keys.

IV. HEAP MICROARCHITECTURE
In this section, we describe the microarchitecture of HEAP which

consists of functional units, register files, FIFOs, on-chip memory,
and various control units. In addition, we describe our datapath
optimizations to the NTT and blind rotation operation. Note that the
design described here maps to a single FPGA and the overall system
design with multiple FPGAs is described in detail in Section V.

A. Functional Units
We categorize the functional units in HEAP into modular

arithmetic units, permute units, and external product units. The
modular arithmetic units consist of modular adders, subtractors,
and multipliers. The permute unit consists of an automorph unit
for CKKS Rotate and a rotation unit for TFHE BlindRotate
operation. The external product units consist of multiply and
accumulate (MAC) units that perform element-wise multiplication
between two polynomials and accumulate their partial sums. This
unit is required both during basis conversion operation in CKKS
KeySwitch operation and in TFHE BlindRotate operation.
Modular Arithmetic Units: The lower-level operations in both
the CKKS and TFHE schemes are modular arithmetic operations.
Our RNS limb size is 36 bits and the fast multipliers and adders in
the DSP blocks on FPGA are 18-bit and 32-bit wide, respectively.
Consequently, to map 36-bit multiplications and additions to the

DSP blocks, we follow the modular arithmetic circuit design
principles, wherein one can compose the existing multipliers and
adders into larger word-size arithmetic units. Following the same
principle, a 36-bit integer multiplier can be realized by composing
two 18-bit integer multipliers and similar holds for the adder as well.

To perform the modular reduction during addition and
subtraction operations, we use the conditional operator, one of
the least expensive ways of doing modular reduction. We perform
standard Barrett reduction [4] following the integer multiplication
operation. However, we combine the integer multiplication and
Barrett reduction in a way so as to start the reduction process as
soon as the partial result of the multiplication gets generated. This
helps in reducing the overall latency of the modular multiplication
operation. We do not utilize Montgomery reduction as this approach
is shift-based and would consume LUTs on the FPGA. Instead,
we employ the Barrett reduction approach, which allows us to
utilize DSP multipliers instead of LUTs. This frees up LUTs to
be allocated for other operations. Our modular addition, modular
subtraction, and modular multiplication take 7 clock cycles to
perform a single scalar modular operation. We instantiate a total
of 512 modular arithmetic units after a detailed analysis of the
compute utilization that can match the memory throughput.
Permute Unit: The permute unit consists of an automorph unit
for CKKS Rotate and a rotation unit for TFHE BlindRotate
operation. The automorph unit follows the index mapping equation
as ir = i · 5r (mod N). So the automorph unit moves the i-th
coefficient of a polynomial to the position indexed by ir where r is
the number of positions by which rotation is to be performed. The
values 5r (mod N) are precomputed. Then the multiplication with
the current index becomes a very low-cost computation as it can
be done using shift operations.

We instantiate 512 automorph units that can operate on 16
elements each to rotate all the coefficients in a polynomial.
Therefore, it takes 16 cycles to finish the entire automorph operation
on a single ciphertext limb. Note that this does not include the
cycle count for the KeySwitch operation that follows automorph
operation in the CKKS Rotate operation.

The rotation unit for TFHE performs a polynomial negacyclic
rotation [5]. The rotation unit rotates the coefficients by k positions
where k comes from f ·Xk as described in Section III-A. The
rotation operation is followed by a subtraction or addition (as
required), which is performed using the adder within this rotation
unit. Note that rotation performed here is different from automorph
operation as it is dependent on any sort of ring mapping.
External Product Unit: The MAC units within the external
product unit perform an element-wise multiplication between
two polynomials and accumulate their sums. These MAC units
perform an integer multiplication followed by a modular addition
operation. Each MAC unit is a low-latency fused multiplier and
adder where the addition starts immediately after the partial results
of multiplication are available. Furthermore, the modular reduction
starts immediately after the partial result of addition is generated.
We leverage the idea of lazy reduction by performing modular
reduction only after both multiplication and addition operations are
done. This lowers the latency of the external product operation and
incurs less resource utilization on the FPGA.
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To enable basis conversion operation [21] during ModUp and
ModDown in CKKS KeySwitch operation, the external prod-
uct unit is bundled with a dual-port BRAM block. Two full (192×2)
BRAM blocks are tightly coupled with the MAC units to enable
input and output worth at least two ciphertexts. During the TFHE
BlindRotate operation, these BRAM blocks enable the reading
of multiple LWE ciphertexts and accumulate the results in RLWE
ciphertexts. As soon as one of the RLWE ciphertexts is accumulated
in the BRAM block, it is written out to the main memory.

B. Register Files and FIFOs
HEAP design comprises multiple register files (RFs) with a

combined capacity of 1 MB. These RFs are distributed throughout
the design and serve functional, address generation, and control
units. Each RF features multiple read/write ports, each with a single-
cycle access latency. Approximately half of the RF is allocated for
storing the ciphertexts while computing on them and one-fourth of
the remaining RF is allocated for storing pre-computed values and
scheme-related parameters. The pre-computed values are written by
the host CPU through atomic writes before initiating the execution
of the kernel code.

The HEAP design incorporates 32 synchronous read (RD) and
write (WR) FIFOs, accommodating 32 AXI ports on the HBM side
for seamless data streaming between the main memory and on-chip
memory. These FIFOs are constructed using the distributed RAM
on the FPGA board, with each FIFO’s data width matching the data
width supported by each AXI port (256 bits). The RD FIFO has
a depth of 512 to handle up to four outstanding reads, while the
WR FIFO has a depth of 128 to facilitate an HBM burst length of
128. The RD FIFO’s clock input comes in from the memory-side
clock domain so the RD FIFO operates at a clock frequency of 450
MHz. The WR FIFO’s clock input comes in from the kernel-side
clock domain so the WR FIFO operates at a clock frequency of
300 MHz. In addition, Transmit (TX) and Receive (RX) FIFOs
are instantiated to facilitate data streaming between the CMAC
subsystem and on-chip memory. These TX and RX FIFOs, like
the others, are synchronous and feature a 512-bit data interface.

C. On-chip Memory Organization
The Alveo U280 FPGA has 962 UltraRAM (URAM) blocks and

4032 Block RAM (BRAM) blocks. Each URAM block can store
4096 data elements where each element is 72 bits wide while each
BRAM block can store 1024 data elements where each element
is 72 bits wide. URAM blocks can only be used as single-port
memory while BRAM blocks can be used as both single and
dual-port memory.

As shown in Figure 2, each URAM address can store two coeffi-
cients as each RNS limb coefficient is 36 bits. From our ctR=(a,b),
we store the coefficient from the limbs (with respect to the same
modulus) of a and b adjacent to each other. The goal is to fetch the
coefficients from the limbs with respect to the same modulus at once
so that all the pre-computed values including the twiddle factors for
NTT/iNTT can be read at once instead of reading them twice. With
this organization of data in URAMs, we need 12 URAM blocks to
store all the limbs within both the ring elements of the ciphertext. We
can utilize up to 960 URAM blocks to store 80 RLWE ciphertexts
when performing BlindRotate operation during bootstrapping.

As shown in Figure 3, each BRAM address can store only half
a coefficient, i.e., 18 bits from the 36-bit wide RNS limb coefficient.
We combine two BRAM blocks to store one entire 36-bit coefficient.
We further combine BRAM blocks to enable the storage of two
coefficients adjacent to each other and 4096 coefficients depth-wise.
By doing so we match the storage organization within the BRAM
blocks to that of the URAM blocks. Thus, the address generation
logic to fetch the coefficients of the ciphertext limbs remains the
same irrespective of URAM or BRAM. We need 192 BRAM
blocks in total to store all the limbs of the ciphertext and we can
utilize up to 3840 BRAM blocks to store 20 RLWE ciphertexts.

It takes one clock cycle to perform a read as well as a write op-
eration to and from the URAM and BRAM blocks. We avoid using
URAM blocks during the MAC operations as they add to the latency
with only a single port to perform both read and write operations.
We store all the read-only data fetched from the main memory to
URAM blocks. This read-only data consists of all the evaluation
keys, pre-computed twiddle factors, and the BlindRotate keys.
We use BRAM blocks during the MAC operations as they enable
simultaneous reads and writes within the same clock cycle.

D. NTT Datapath Optimization
NTT is one of the most compute-intensive operations and

becomes a key bottleneck while performing homomorphic
operations. The computational complexity of NTT is O(N logN)
where N/2 butterfly operations are performed in each of the logN
stages of NTT. We leverage our modular arithmetic units to perform
these butterfly operations (radix-2). When performing the butterfly
operations using the 512 modular arithmetic units, we can process
1024 coefficients at once.

As described in Section IV-C, we access one coefficient from two
different limbs in parallel at once, therefore, we perform NTT on two
limbs in parallel. However, these two limbs are from different ring
elements but belong to the same modulus, requiring the same twiddle
factors to perform the NTT operation. Consequently, we benefit
from reading the same twiddle factors from the main memory to the
on-chip memory, avoiding reading them twice. This optimization



reduces the amount of data to be fetched from the main memory
and thus helps lower the main memory bandwidth requirements.
Our first set of 256 modular arithmetic units operates on 512
coefficients from the first limb and the second set of 256 modular
arithmetic units operates on 512 coefficients from the second limb.

Our NTT datapath follows the data access pattern as per the
Cooley-Tukey algorithm [46]. We simplify the address generation
logic and fetching of the twiddle factors from the on-chip memory to
the compute units by optimizing the data access pattern as well. We
group the coefficients in each stage based on the twiddle factor that
they need for the butterfly operation. We denote the current stage of
NTT using notation cs. Each group has nc=N/2cs coefficients and
coefficients within each group can be indexed using inc=0 tonc−1.
Therefore, the number of groups ng=N/nc and we denote ig to in-
dex into these groups. Now, we can generate the address for the coef-
ficients to be processed by butterfly units as address=ig+inc∗2cs
Thus, the address generation logic gets highly simplified. This opti-
mization has the added advantage of enabling on-the-fly twiddle fac-
tor generation, which is helpful when the on-chip memory is not suf-
ficient to store all the twiddle factors at once and we have available
compute bandwidth. Therefore, by setting an appropriate control sig-
nal, we can easily switch between reading the twiddle factors from
memory versus generating them on the fly. Note that our iNTT im-
plementation follows the Cooley-Tukey algorithm datapath as well.

E. BlindRotate Datapath Optimization
The sequence of sub-operations in BlindRotate operation

includes rotation, decompose, ExternalProduct, and Extract.
These sub-operations are to be performed sequentially on a
ciphertext, limiting the performance of the BlindRotate
operation. Moreover, every ExternalProduct requires a new
BlindRotate key (brk), increasing the overall data transfers. We
can extract more performance and reduce the memory footprint of
this operation by scheduling BlindRotate operation on multiple
LWE ciphertexts instead.

Using this parallel scheduling approach, we can schedule up to
512 ciphertexts in parallel. This is because we have 512 functional
units to enable the processing of 512 ciphertexts in parallel. We
perform rotation on all 512 ciphertexts first, then decompose all of
them, and then move forward to perform the ExternalProduct
operation. Note that rotation and decompose sub-operations happen
on the ciphertext in the coefficient domain. So, before performing
the ExternalProduct operation, we need to perform NTT on the
ciphertext to enable fast element-wise polynomial multiplication op-
erations. The literature makes use of either FFT or NTT operation de-
pending on the underlying compute platform. We use our optimized
NTT implementation as complex FFT will be expensive to perform.

Now when performing ExternalProduct, we schedule the
elements requiring the same brk at once in parallel. Consequently,
we need to fetch one key at a time, perform the external product
using the key, and then discard the key. We do not need to read the
same key again, enabling the scope of on-the-fly brk generation
in cases when the on-chip memory is limited. After multiplication
with brk, we store the resultant ciphertext in a dual-port BRAM.
Following the second multiplication between the ciphertext and
brk, the first multiplication result gets read from the BRAM and

added to this result. Thus, using dual-port BRAMs, we perform
partial accumulation during the ExternalProduct compute and
save reads and writes from/to the main memory.

Note that our basis conversion operation in the
CKKS KeySwitch follows the same datapath as the
ExternalProduct operation. Hence, we do not describe
the optimized KeySwitch datapath in detail here.

V. OVERALL SYSTEM ARCHITECTURE

In this section, we introduce the overall system architecture
employing multiple FPGAs for the deployment of our proposed
HEAP hardware accelerator.

We first describe the system architecture that maps to a single
FPGA. As shown in Figure 4, our full system comprises various
components. The first component is an X86 host CPU responsible
for offloading both data and the HEAP RTL design to the FPGA.
The host CPU is connected to the Alveo U280 FPGA through
a PCIe interface. This PCIe connection facilitates data transfer
between the host and the global memory on the FPGA board.
Facilitating this data transfer involves the host allocating a buffer in
the global memory with a size corresponding to that of the dataset.
An AXI4-Lite interface is used by the host to communicate the
base address of the buffer to the RTL code as well as other required
parameters. A C++ host code kicks off the RTL code using the
OpenCL API call. Once the RTL execution code completes, the
results are transferred back to the host code.

The second component is our HEAP RTL design comprising of
functional units, on-chip memory (URAMs and BRAMs), RFs, FI-
FOs, control logic, and address generation logic. In addition, the RTL
design implements 32 memory-mapped 256-bit interfaces. These
interfaces are AXI4 master interfaces that enable bidirectional data
transfers to/from the global memory. The FPGA’s global memory
consists of two HBM2 stacks each with a capacity of 4 GB with up
to 460GB/s bandwidth. The RD and WR FIFO stream the data from
global memory onto the on-chip memory and back while the TX
and RX FIFO stream the data to and from the CMAC subsystem.

The third and final component is a 100G Ethernet (CMAC)
subsystem facilitating the transmission and reception of data
between FPGAs, without requiring the host’s involvement. The
integrated IP block on the FPGA provides a 100 Gbps Ethernet port
to transfer data between FPGAs that are connected to different hosts.
The CMAC core operates at a clock frequency of 322 MHz. Our
RTL code implements a 512-bit interface with the CMAC core to
enable 100 Gbps data transfer rates. It takes about 458 clock cycles
to transmit an entire RLWE ciphertext for our chosen parameter set.

To extend our system architecture to multiple FPGAs we map
the same HEAP RTL code to eight FPGAs that are connected to
eight different hosts. These FPGAs interact with each other via
the CMAC subsystem without involving the host. Note that, if
required, these FPGAs can interact via the host CPU as well but
that increases the communication latency. Among the eight FPGAs,
we designate one FPGA as the primary FPGA and the remaining
seven FPGAs as the secondary FPGAs.

The primary FPGA is responsible for distributing the LWE
ciphertexts to the secondary FPGAs, and then receiving the LWE
ciphertexts and repacking them into a single RLWE ciphertext.
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TABLE II
HEAP HARDWARE RESOURCE UTILIZATION ON A SINGLE FPGA.

Resource Available Utilized % Utilization
LUTs 1304K 1012K 77.61
FFs 2607K 1936K 74.26

DSPs 9024 6144 68.08
BRAM blocks 4032 3840 95.24
URAM blocks 962 960 99.80

The primary FPGA sends all the ciphertexts intended for one
of the secondary FPGAs before sending the ciphertexts for the
next one. This approach not only helps the HEAP architecture to
utilize the optimized BlindRotate datapath but also prevents the
network from becoming the bottleneck. A secondary FPGA starts
sending the resultant LWE ciphertext to the primary FPGA for
accumulation as soon as the BlindRotate operation is completed
on the ciphertexts. We overlap the communication between FPGAs
and the computation in FPGAs through smart scheduling such that
no FPGA is sitting idle i.e. communication between the FPGAs
is not the bottleneck.

Note that we have a parameter namely nbr in the HEAP state
machine that controls the number of BlindRotate operations
that need to be scheduled on an FPGA. This is required because
not all applications require us to use all of the slots in a ciphertext
(fully packed ciphertext). Some may instead need to do a sparse
packing. Thus, for a given application that needs to be evaluated, the
number of slots that are packed in a ciphertext varies and we add the
capability to easily modify the number ofBlindRotate operations
that need to be performed on a single FPGA. Consequently, the
performance can be tuned for the application under evaluation.

VI. EVALUATION
As mentioned earlier, we map our HEAP accelerator to single

and multiple Alveo U280 FPGAs. We design HEAP using Xilinx
Vivado 2022.2 and Vitis 2022.2 EDA design tools. The RTL code is
written in Verilog 2001. The Vitis compiler takes care of compiling
and linking the RTL code to generate the binary that gets mapped to
an FPGA. The execution of this binary is initiated by the host code
in the cloud environment. The maximum operating frequency that
we are able to achieve for HEAP is 300 MHz. We would like to note
that throughout this section, if unspecified, HEAP’s performance
numbers are based on its implementation using eight FPGAs.

A. FPGA Resource Utilization
In Table II, we present the hardware resource utilization of the

various components of HEAP. Overall, HEAP utilizes 1012K LUTs

which is about 77.61% of the total LUTs present on the FPGA. The
functional units utilize the most LUTs, i.e., 42% of the total LUTs
utilized. HEAP utilizes a total of 1936K FFs in the functional units,
RFs, FIFOs, address generation logic, and control logic. The entire
DSP utilization is for the modular adder, subtractor, multipliers, and
MAC operations within the functional units. HEAP achieves 95.24%
BRAM and 99.8% URAM utilization for the on-chip memory.

B. Area and Power Comparison
Although we cannot directly compare the area and power

of FPGA designs to that of ASIC designs, we present a brief
comparison of the area in terms of the number of modular multipliers
instantiated and the total on-chip memory. HEAP on a single FPGA
instantiates 512 modular multipliers and uses 43 MB on-chip
memory. Thus, HEAP on eight FPGAs instantiates 4096 modular
multipliers and uses 344 MB on-chip memory in total. The ASIC
designs instantiate 4096-20480 modular multipliers and the on-chip
memory ranges from 72-512 MB. Moreover, the ASIC designs
have access to these resources on a single chip in a coherent fashion,
making it much easier to make optimal use of these resources. This is
not the case with HEAP design using eight FPGAs. To the first order,
power consumption is proportional to the area of a chip, which is
proportional to the number of compute units and memory. Typically,
ASICs consume less power than FPGAs. Given the smaller compute
unit count and smaller on-chip memory in HEAP, we expect its
power consumption to be comparable, if not better, than ASICs.

C. Parameter Choice for Comparison with State-of-the-art
For parameters N = 216 and N = 213, to achieve a 128-bit

security, ciphertext comprises of 24 and 6 limbs, respectively.
Interestingly, conventional bootstrapping for N=216 and scheme-
switching-based bootstrapping for N =213 utilizes 19 limbs and
1 limb, respectively, leaving 5 limbs in the ciphertext in both cases.
So we are left with the same number of limbs for performing other
operations within the application. Consequently, applications that
use N = 216 with conventional bootstrapping and N = 213 with
scheme-switching-based bootstrapping, will perform homomorphic
encryption operations on the same number of ciphertext limbs.

Now to account for the difference in the number of slots while
evaluating bootstrapping, we do not compare the bootstrapping
runtime directly but compare the TMult,a/slot. This equation is used
by all the state-of-the-art works [34], [37], [38], [50] to compare
bootstrapping performance as it accounts for any difference in



TABLE III
EXECUTION TIME (IN MS) FOR PERFORMING BASIC FHE OPERATIONS AND SPEEDUP ACHIEVED USING HEAP (SINGLE FPGA). NOTE THAT Add, Mult,

Rescale, AND Rotate ARE NOT SUPPORTED IN TFHE [17], WHILE BlindRotate IS NOT SUPPORTED BY FAB [2], GPU [34] AND GME [51].
Operation Scheme HEAP FAB [2] GPU [34] GME [51] TFHE [17] Speedup

vs FAB
Speedup
vs GPU

Speedup
vs GME

Speedup
vs TFHE

Add CKKS 0.001 0.04 0.16 0.028 - 40× 160× 28× -
Mult CKKS 0.028 1.71 2.96 0.464 - 61.1× 105.71× 16.57× -
Rescale CKKS 0.010 0.19 0.49 0.069 - 19× 49× 6.9× -
Rotate CKKS 0.025 1.57 2.55 0.364 - 62.8× 102× 14.56× -
BlindRotate TFHE 0.060 - - - 9.40 - - - 156.7×

TABLE IV
NTT THROUGHPUT (OPERATIONS/SECOND) FOR HEAP (SINGLE FPGA).

(PARAMETER SET USED N=213 AND logQ=218)
Operation HEAP FAB [2] HEAX [48] Speedup

vs FAB
Speedup
vs HEAX

NTT 210K 103K 90K 2.04× 2.34×

number of slots. When it comes to comparing the performance of
applications, the difference in the slot count because of N =213

and N=216 does not matter. This is because we are matching the
number of slots used for LR model training and ResNet-20 with
what has been used in state-of-the-art prior work [36]–[38], [50].

D. Basic Building Block’s Performance

Here we present the execution time for basic operations in the
CKKS & TFHE scheme in Table III3. For HEAP the parameter
set used is N=213, logQ=216. The 128-bit secure FAB [2] and
GME [51] numbers reported in the table are using the parameter set
N=216 and logQ=1728. For the numbers in the GPU column, we
use the most optimized performance numbers reported in the work
by Jung et al., [34] for the parameter set N=216, logQ=1693, and
100-bit security. We compare using this parameter set even when
HEAP uses a smaller parameter set because if we were not using the
scheme switching approach to support CKKS bootstrapping, HEAP
will need to work with at least N=216 and logQ=1728 parameter
set to enable CKKS bootstrapping. For the basic CKKS operations,
HEAP achieves an average 45.72×, 104.18×, and 16.51× speedup
(when comparing absolute execution time) compared to FAB, GPU,
and GME work, respectively. Note that we can use a smaller N and
smaller logQ for HEAP because of the scheme-switching approach.
This leads to better performance in HEAP. Finally, we compare
the performance of the BlindRotate operation in HEAP with
its TFHE [17] implementation on the CPU. We observe a 156.7×
speedup, with a runtime of 0.06ms for BlindRotate in HEAP
compared to 9.40ms in TFHE.

In Table IV, we compare the throughput of HEAP with
HEAX [48], and FAB [2] when running NTT. We use the
same parameter set (N = 213 and logQ = 218) for all three
implementations for a fair comparison. HEAP achieves an average
2.04× and 2.34× higher throughput than FAB and HEAX,
respectively. The higher performance of HEAP can be attributed
mainly to the inclusion of low-latency modular arithmetic modules
to perform butterfly operations, the fine-grained pipelining for these
units, and the optimization of the NTT datapath to a high degree.

3Note that we do not compare the performance of basic operations with CPU and
other ASIC works as these works do not report numbers for these basic operations.

E. Bootstrapping Performance
For the parameter set mentioned in Section III-C, we first

evaluate the performance of our modified CKKS bootstrapping. We
utilize all the slots (n= 4096) of the ciphertext, i.e., we perform
a fully-packed bootstrapping. Both the number of LWE ciphertexts
and BlindRotate operations to be performed are equal to n.
We distribute these ciphertexts equally amongst all eight FPGAs,
implying that each FPGA processes 512 LWE ciphertexts. As a
result, with our scheme-switching approach, the time it takes to
perform a single CKKS bootstrapping is ∼1.5 ms (In Algorithm 2,
steps 1&2 take 0.0025 ms, step 3 takes 1.3303 ms, and steps 4&5
take 0.1672 ms). We observe this low latency because, with our
scheme-switching approach, we do not need to perform hundreds of
expensive CKKS KeySwitch operations (that are part of Rotate
and Mult operations) as required in the state-of-the-art CKKS
bootstrapping algorithm [21].

We next compare the bootstrapping performance of HEAP with
the existing state-of-the-art CPU, GPU, FPGA, and ASIC implemen-
tations (see Table V). Throughout this section, we use the following
terminology for various implementations; CPU implementation is
referred to as Lattigo [6], GPU implementation for 97-bit security by
Jung et al. [34] is referred to as GPU, BTS ASIC proposal referred
to as BTS-2 [38] for the best case numbers reported by the authors,
and CraterLake [50] ASIC proposal (for their parameters achieving
128-bit security) referred to as CL in abbreviated form. Other works
are referred to in the same way as before. To fairly compare the
bootstrapping latency, we follow the literature and use the amortized
per slot multiplication time TMult,a/slot given as follows:

TMult,a/slot :=
TBS+

∑ℓ
i=1TMult(i)

ℓ·n
(3)

Here, n is the number of slots in the ciphertext, TBS is the
bootstrapping time, and TMult(i) is the time to multiply at level
i. The number of levels ℓ in the resulting ciphertext is equal to the
maximum supported levels in the starting bootstrapping modulus
minus the depth of bootstrapping. The depth of our bootstrapping
algorithm is 1. Note that all the previous state-of-the-art work report
bootstrapping performance using this metric.

In Table V, for CKKS, we compare the performance of a single
conventional bootstrapping operation vs. a single bootstrapping
using the proposed scheme-switching approach. From Table V, we
observe that HEAP outperforms CPU, GPU, FPGA, and some of
the prior ASIC proposals in terms of absolute bootstrapping time.
HEAP does not outperform ARK and SHARP ASIC proposals due
to its lower operating frequency. However, when we compare the
performance in terms of clock cycles, HEAP outperforms all prior
ASIC proposals and performs at least 1.29× better than all prior



TABLE V
SPEEDUP USING HEAP WHEN PERFORMING BOOTSTRAPPING OPERATIONS.

SLOTS = #PACKED SLOTS IN CIPHERTEXT WHILE BOOTSTRAPPING.
BOOTSTRAPPING TIME IS COMPUTED USING Tmult,a/slot IN EQUATION 3.

Work Freq.
(GHz)

Slots Time
(µs)

Speedup
(Time)

Speedup
(Cycles)

Lattigo [6] 3.5 215 101.78 3283× 38313×
GPU [34] 1.2 215 0.716 23.10× 92.4×
GME [51] 1.5 216 0.074 2.39× 11.93×
F1 [49] 1 1 254.46 8208× 27334×
BTS-2 [38] 1.2 216 0.0455 1.47× 5.87×
CL [50] 1 215 4.19 13.96× 46.49×
ARK [37] 1 215 0.014 0.45× 1.50×
SHARP [36] 1 215 0.012 0.39× 1.29×
FAB [2] 0.3 215 0.477 15.39× 15.39×
HEAP 0.3 212 0.031 - -

TABLE VI
COMPARISON OF AVERAGE TRAINING TIME PER ITERATION FOR LR MODEL

WHEN USING SPARSELY-PACKED CIPHERTEXTS [38].
Work Time (sec) Speedup (Time) Speedup (Cycles)
Lattigo [6] 37.05 5293× 58221×
GPU [34] 0.775 111× 443×
GME [51] 0.054 7.7× 38.57×
F1 [49] 1.024 146× 486×
BTS-2 [38] 0.028 4× 16×
ARK [37] 0.008 1.14× 3.8×
SHARP [36] 0.002 0.29× 0.96×
FAB [2] 0.103 14.71× 14.71×
FAB-2 [2] 0.081 11.57× 11.57×
HEAP 0.007 - -

work. HEAP achieves better performance because of less compute
overhead during bootstrapping and because of the scheme-switching
approach that enables the use of a smaller parameter set. Note that
F1 performs only a single-slot bootstrapping while others perform a
fully-packed bootstrapping. Furthermore, the parameter set used in
F1 is not large enough to support fully-packed CKKS bootstrapping
following the usual algorithm [13].

F. Application Performance
In this section, we evaluate HEAP when running two applications:

Logistic Regression (LR) model training and ResNet-20 inference.
1) Logistic Regression Model Training: We evaluate the

application of HEAP in conducting LR model training for binary
classification on a subset of MNIST data [22] specifically labeled
3 and 8. This task aligns with the focus of HELR work [29], and
it serves as the consistent benchmark for all the comparisons with
other works. The designated subset of the dataset comprises 11,982
training samples, each featuring 196 attributes. Following the
sequence of homomorphic operations proposed by Han et al. [29]
for LR model training, we train the model for 30 iterations and
perform a bootstrapping operation after every iteration. We pack
only 256 slots in ciphertext i.e., use sparsely-packed ciphertexts
following the state-of-the-art implementation [2], [37], [38], [50]
in the literature for a fair comparison.

As shown in Table VI, we observe 5293× speedup (when
considering absolute training time per iteration) when compared to
the existing CPU implementation. This is attributed to the fact that
CPUs are not well-suited to the requirements of FHE computing.
We observe 111× and 7.7× speedup when compared to the GPU
and GME implementations, respectively. While both works involve

TABLE VII
PERFORMANCE COMPARISON FOR RESNET-20 INFERENCE.
Work Time (sec) Speedup

(Time)
Speedup
(Cycles)

CPU [40] 10602 39708× 436786×
GME [51] 0.982 3.7× 18.39×
CL [50] 0.321 1.20× 4×
ARK [37] 0.125 0.47× 1.56×
SHARP [36] 0.099 0.37× 1.23×
HEAP 0.267 - -

GPU implementations, the reduced performance gap in comparison
to GME is attributed to their microarchitectural enhancements
designed to specifically support FHE computing.

When compared to F1 (when it uses a similar parameter
set as HEAP), BTS-2, and ARK ASIC proposals, we observe
146×, 4×, and 1.14× speedups for HEAP. The performance
improvement in HEAP is purely because of the scheme-switching
approach followed for bootstrapping. Furthermore, when comparing
HEAP with BTS-2 and ARK, we observe a higher performance
improvement for LR model training than what we see for
fully-packed bootstrapping. This is because sparser packing means
less number of LWE ciphertexts and BlindRotate operations
that need to be performed in HEAP. This provides a better overall
performance for the LR model training application. However, when
compared to SHARP, we observe almost similar performance in
terms of the number of cycles as both SHARP and HEAP are
highly optimized 36-bit architectures. Thus, HEAP does not have an
advantage over SHARP in terms of the time taken to perform scalar
operations on the polynomial coefficients. Despite this fact and a
lower operating frequency, HEAP achieves similar performance
to SHARP, due to a reduction in the % of bootstrapping time spent
in a single LR model training iteration when compared to SHARP.

In comparison to FAB (single FPGA implementation) and FAB-2
(implementation on eight FPGAs), we observe 14.71× and 11.57×
speedup in HEAP. This is because the operations within CKKS
bootstrapping are sequential and are implemented in that order in
FAB, limiting the parallelism that can be extracted. Furthermore, the
CKKS bootstrapping does not scale well to multiple FPGAs in FAB,
again limiting FAB’s performance. Thanks to our scheme-switching
approach for bootstrapping, we can scale to multiple FPGAs and
perform most operations in bootstrapping in parallel. This also helps
bring down the overall bootstrapping time in the LR model training.
FAB observed ∼70% of LR training time spent in bootstrapping
while in HEAP that reduces to ∼21% Thus, the compute-to-
bootstrapping ratio changes from 0.3 to 0.79 per iteration.

2) ResNet-20 Inference: The ResNet-20 inference is performed
on the CIFAR-10 dataset following the sequence of homomorphic
operations proposed by Lee et al. [39]. For this application, we pack
1024 slots in a ciphertext and thus, perform operations on 1024
LWE ciphertexts when performing the bootstrapping operation.
Note that we pack 1024 slots in the ciphertext for a fair comparison
with state-of-the-art implementations that follow the same approach.
In Table VII, we compare HEAP’s performance with CPU, GPU,
and other ASIC proposals for ResNet-20 inference. When compared
to CPU and GPU implementations, HEAP achieves 39708× and
3.7× performance improvement for ResNet-20 inference. When
compared to ASIC proposals, HEAP outperforms CL in absolute



TABLE VIII
RUNTIMES AND SPEEDUP DUE TO SCHEME SWITCHING (SS) AND. DUE TO

HARDWARE OPTIMIZATIONS. SPEEDUP 1 IS THE RATIO OF RUNTIME OF SS ON
CPU TO RUNTIME CKKS ONLY ON CPU. SPEEDUP 2 IS THE RATIO OF

RUNTIME OF SS ON HEAP TO RUNTIME OF SS ON CPU.
Workload CKKS only

on CPU
SS on
CPU

Speedup
1

SS on
HEAP

Speedup
2

Bootstrapping 4168ms 436ms 9.6× 1.5ms 290.7×
LR Model
Training

37.05s [6] 2.39s 15.5× 0.007s 341.4×

ResNet-20
Inference

10602s [40] 309.7s 34.2× 0.267s 1160×

time despite its lower operating frequency. Furthermore, HEAP
outperforms the ARK and SHARP ASIC proposals by 1.56× and
1.23×, respectively in terms of the clock cycles. The performance
improvement in HEAP is because of the speedup achieved in
bootstrapping operation as in ResNet-20∼80% of the time is spent
in bootstrapping. With our proposed approach, overall time spent
in bootstrapping reduces to ∼44% of the total ResNet-20 inference
time. Therefore, the ratio of compute-to-bootstrapping time changes
from 0.2 to 0.56 for inference.

Although we observe speedups when compared against
most works (as shown in Table VII), we do not observe the same
speedups as those for LR model training. This is because we are now
operating on four times more LWE ciphertexts during bootstrapping.
During LR model training, we utilized 256 slots in the ciphertext,
resulting in 256 LWE ciphertexts during bootstrapping. However,
during ResNet-20 inference, we utilize 1024 slots in the ciphertext,
resulting in 1024 LWE ciphertexts during bootstrapping. This
means we are generating four times more ciphertext to operate on
during ResNet-20 inference compared to LR model training.

3) Model Accuracy: Note that the accuracy of both the LR model
and ResNet-20 inference model does not diminish when using
our scheme-switching approach to bootstrapping. On HEAP, the
observed accuracy for the LR model is∼97% and for the ResNet-20
model is ∼94%, which is better than the accuracy observed by the
state-of-the-art works [36], [37]. This improved accuracy is mainly
because, unlike the conventional CKKS bootstrapping algorithm, we
do not perform any polynomial evaluation for CKKS bootstrapping
with our scheme-switching approach. The polynomial evaluation in
conventional bootstrapping is an approximation of a non-linear func-
tion such as sine or cosine, and this approximation reduces accuracy.

4) Performance Benefits from Scheme Switching vs. Hardware
Optimizations: In Table VIII, we present the runtimes for var-
ious workloads for three cases 1) CKKS on CPU; 2) Scheme
switching (SS) on CPU; and 3) SS on HEAP. This helps us
understand the performance benefits derived solely from the scheme-
switching approach versus those achieved solely through hardware
optimizations. The enhancements achieved solely from the scheme-
switching approach range from 9× to 34×, while those attained with
HEAP range from 290× to 1160×. The primary reason for lower
performance improvement when using SS on CPU is the limited par-
allelization opportunities available on the CPU compared to HEAP.

VII. DISCUSSION

In this section, we present two other aspects of our proposed
scheme-switching approach and HEAP implementation.

A. Standalone TFHE scheme on HEAP
As discussed throughout the paper, HEAP is readily applicable

to the CKKS scheme, enabling an arbitrary number of operations
with support for bootstrapping. Here, we briefly discuss HEAP’s
applicability to support standalone TFHE scheme, if required.
We already implemented two of the key operations in TFHE
scheme, i.e., ExternalProduct and BlindRotate operations.
BlindRotate is the core of programmable bootstrapping (PBS)
operation in TFHE, implying that BlindRotate with PBS
keys can perform PBS in a straightforward way. The Extract
operation is also implemented as a part of BlindRotate operation.

The KeySwitch operation consists of Decomposition and
ExternalProduct with the evaluation keys. Decomposition
is a gadget decomposition operation similar to the one in the CKKS
scheme and is performed using the same set of operations, but using
a different set of pre-computed values. The ModulusSwitch
operation can be performed using scalar multiplication operations.
The CMux operation can be mapped via simple multiplication,
addition, and subtraction operations.

Finally, we have the InternalProduct operation that
needs to be performed as part of the TFHE scheme. This
InternalProduct between GGSW ciphertexts can be
defined using the ExternalProduct. Typically, a GGSW
ciphertext can be viewed as a list of GLWE ciphertexts. As the
ExternalProduct is a product between GLWE and GGSW
ciphertexts, the InternalProduct can be defined as a list of
independent ExternalProducts. For each of these independent
ExternalProducts, one of the inputs is GGSW ciphertext,
and all the GLWE ciphertexts form the second GGSW ciphertext
input. The output of these independent ExternalProducts is
the GLWE ciphertexts, which can be put together into one single
GGSW ciphertext.

B. Applicability to other Compute Platforms
While we prototype our proof-of-concept implementation on

single and multiple FPGA systems, it is essential to note that our
proposed scheme-switching approach and optimizations are not ex-
clusive to FPGA. The scheme-switching approach for bootstrapping
can be readily adapted to enhance CKKS bootstrapping on various
underlying compute platforms, including CPU, GPU, and ASIC.

VIII. RELATED WORK
CKKS Acceleration Efforts: Recent research on FHE accelerators
has been predominantly centered around the acceleration of the
CKKS FHE scheme. In the early software implementations [15]
of bootstrapping, attempts were made to minimize the number of
rotations needed in the linear transformation step (which involves
converting ciphertexts from coefficient to evaluation representation
and back) by incorporating the baby-step giant-step (BSGS) algo-
rithm [28]. Chen et al. [10] introduced a method for level-collapsing
in combination with the BSGS algorithm as a means to enhance the
efficiency of the linear transformation step and reduce the number
of required rotations. Subsequently, Han and Ki [30] presented a
hybrid key-switching method designed to effectively control the
noise introduced during the key-switching operation. Bossuat et
al. [6] went a step further in reducing the operational complexity
of linear transformations by streamlining rotations through the



strategic application of the hybrid key-switching approach. This
optimization effectively minimizes the number of basis conversion
operations and, in turn, decreases the accesses to main memory.

Jung et al. [34] introduced the first GPU-based implementation
of CKKS bootstrapping. Their optimization strategies, including
both inter- and intra-kernel fusion, predominantly concentrate
on enhancing memory bandwidth utilization. One of the recent
GPU implementations [51] proposed several microarchitectural
extensions to the AMD GPU to accelerate the CKKS FHE scheme.
To reduce main memory bottlenecks, the authors integrate a
lightweight on-chip compute unit side hierarchical interconnect to
retain ciphertext in cache across FHE kernels. They also propose
a locality-aware block scheduler that exploits the temporal locality
available in various FHE primitive blocks.

Simultaneously, there have been initiatives to accelerate CKKS
on both FPGA and ASIC platforms. HEAX [48] emerged as an
early FPGA-based accelerator for FHE which accelerated only
CKKS encrypted multiplication, with all other operations being
delegated to a host processor. In a similar vein, there are a few other
FPGA-based acceleration efforts specific to CKKS that exclusively
implement NTT [55] and key switch [31] operations. One of the
more recent FPGA implementations [2] implemented CKKS packed
bootstrapping for the first time on FPGA with a support for practical
parameter set. The first ASIC design was proposed by Samardzic
et al. [49]. The same authors proposed a series of additional
optimizations in their subsequent work [50]. In parallel, Kim et
al. proposed three other ASIC designs namely BTS [38], ARK [37],
and SHARP [36]. These designs incorporate various optimizations
and have demonstrated remarkable performance in bootstrapping.
TFHE Acceleration Efforts: Accelerators based on TFHE have
been the subject of numerous efforts aimed at enhancing the
performance of TFHE operations. These initiatives have sought
to accelerate the TFHE scheme on a range of platforms, including
CPU [44], GPU [18], [20], FPGA [23], [45], [56], ASIC [33], [47],
and compute-enabled RAM [53]. Morshed et al. [44] explored both
CPU and GPU parallelization of TFHE. They use parameters that en-
able 110 bits of security along with a 32-bit torus discretization. They
report programmable bootstrapping (PBS) runtimes of ∼113ms for
CPU and 22ms for GPU. The cuFHE library [20] uses CUDA to
implement TFHE on GPUs, achieving a latency of 0.5ms for PBS.

NuFHE’s GPU acceleration uses either NTT or FFT, with FFT
outperforming NTT. One of the FPGA acceleration efforts [56]
employs NTT for polynomial multiplication, achieving a 1.3×
throughput improvement compared to NuFHE. ASIC acceleration
in Matcha [33] outperforms prior accelerators using bootstrapping
key unrolling [8] that reduces blind rotation iterations at the cost
of increased key size. Strix [47] advances TFHE acceleration by
utilizing two-level ciphertext batching and specialized functional
units. Their streaming architecture-based accelerator can support
various TFHE parameters and achieves 7.4× higher throughput
than Matcha. Takeshita et al. [53] observed some slowdown in PBS
relative to state-of-the-art works using GPU and FPGA, indicating
that compute-enabled RAM’s relative strength of parallelism is not
effective for the TFHE scheme.
Scheme Switching Approaches: OpenFHE [3] represents the
initial open-source CPU library with the capability to switch

between the CKKS and the DM/CGGI scheme. This flexibility
enables the execution of non-linear operations, such as comparisons,
using the DM/CGGI scheme. Moreover, there are ongoing efforts
to extend the support for broader scheme-switching within the
library, with plans to incorporate this functionality in future updates.
Chimera [7] employs a scheme-switching approach to switch
between CKKS/BFV and TFHE schemes to perform faster inner
products in the TFHE domain.

Pegasus [41] proposed a scheme-switching methodology to
switch between the CKKS and the FHEW scheme to accelerate non-
linear functions in machine learning applications. They accelerate
sigmoid, ReLU, min, max, division, sorting, and max-pooling
functions and demonstrate a reduction of conversion keys from
80GB to 12MB required to switch between the schemes. Several
other works [19], [25], [43] have shown that conversions between
LWE and RLWE combined with blind rotation technique can be an
efficient methodology for evaluating non-linear functions. However,
none of these aforementioned works use the scheme-switching
approach in terms of accelerating the CKKS bootstrapping
operation itself. Kim et al. [35] were the first to propose the idea of
performing the CKKS bootstrapping using a combination of RLWE
and LWE ciphertexts. We leverage their basic idea to propose
a novel scheme-switching approach that parallelizes the CKKS
bootstrapping step to accelerate FHE-based computing.

IX. CONCLUSION

Despite the advancements in FHE schemes, bootstrapping
remains a bottleneck, consuming a significant portion of the
execution time. Our work introduced HEAP, an accelerator that
uses a novel hybrid scheme-switching approach, capitalizing on
the CKKS SIMD nature for fundamental operations and seamlessly
transitioning to the TFHE scheme during bootstrapping. We
proposed a variety of hardware optimizations in HEAP—from
modular arithmetic level to NTT and BlindRotate datapath
optimizations. A proof-of-concept implementation of HEAP
on an Alveo U280 FPGA achieves impressive improvement in
bootstrapping performance when scaled to eight FPGAs. On average,
HEAP demonstrated bootstrapping speeds that are 3283×, 12.7×,
4×, and 15.39× faster than those of current state-of-the-art CPU,
GPU, ASIC, and FPGA implementations. We assessed the efficacy
of this hybrid approach for bootstrapping through the evaluation
of two applications: logistic regression (LR) model training and
ResNet-20 inference. For LR model training, HEAP achieved
an average speedup of 5293×, 59.35×, 37.8×, and 13.14×
compared to existing state-of-the-art CPU, GPU, ASIC, and FPGA
implementations, respectively. Similarly, in the case of ResNet-20
inference, HEAP delivered an average speedup of 39708×, 3.7×,
and 1.2× faster than existing state-of-the-art CPU, GPU, and ASIC
implementations. This research contributes to the ongoing efforts
to enhance the practicality and scalability of FHE schemes, demon-
strating a promising stride towards making secure computation on
encrypted data more efficient and viable for real-world applications.
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[25] A. Guimarães, E. Borin, and D. F. Aranha, “Revisiting the functional bootstrap

in tfhe,” IACR Transactions on Cryptographic Hardware and Embedded
Systems, pp. 229–253, 2021.

[26] S. Halevi, Y. Polyakov, and V. Shoup, “An improved rns variant of the bfv
homomorphic encryption scheme,” in Topics in Cryptology – CT-RSA 2019
- The Cryptographers’ Track at the RSA Conference 2019, Proceedings,
M. Matsui, Ed. Germany: Springer Verlag, 2019, pp. 83–105.

[27] S. Halevi and V. Shoup, “Algorithms in helib,” in Advances in Cryptology
– CRYPTO 2014, J. A. Garay and R. Gennaro, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2014, pp. 554–571.

[28] ——, “Faster homomorphic linear transformations in helib,” in Advances
in Cryptology - CRYPTO 2018 - 38th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part
I, ser. Lecture Notes in Computer Science, H. Shacham and A. Boldyreva,
Eds., vol. 10991. Springer, 2018, pp. 93–120. [Online]. Available:
https://doi.org/10.1007/978-3-319-96884-1\ 4

[29] K. Han, S. Hong, J. H. Cheon, and D. Park, “Efficient logistic regression on
large encrypted data,” Cryptology ePrint Archive, 2018.

[30] K. Han and D. Ki, “Better bootstrapping for approximate homomorphic
encryption,” in Topics in Cryptology – CT-RSA 2020, S. Jarecki, Ed. Cham:
Springer International Publishing, 2020, pp. 364–390.

[31] M. Han, Y. Zhu, Q. Lou, Z. Zhou, S. Guo, and L. Ju, “coxhe: A software-
hardware co-design framework for fpga acceleration of homomorphic
computation,” in 2022 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 2022, pp. 1353–1358.

[32] “Ibm data breach report,” Online: https://www.ibm.com/reports/data-breach,
January 2023.

[33] L. Jiang, Q. Lou, and N. Joshi, “Matcha: A fast and energy-efficient accelerator
for fully homomorphic encryption over the torus,” in Proceedings of the 59th
ACM/IEEE Design Automation Conference, 2022, pp. 235–240.

[34] W. Jung, S. Kim, J. H. Ahn, J. H. Cheon, and Y. Lee, “Over 100x faster
bootstrapping in fully homomorphic encryption through memory-centric
optimization with gpus,” IACR Transactions on Cryptographic Hardware
and Embedded Systems, vol. 2021, no. 4, p. 114–148, Aug. 2021. [Online].
Available: https://tches.iacr.org/index.php/TCHES/article/view/9062

[35] A. Kim, M. Deryabin, J. Eom, R. Choi, Y. Lee, W. Ghang, and D. Yoo,
“General bootstrapping approach for rlwe-based homomorphic encryption,”
IEEE Transactions on Computers, 2023.

[36] J. Kim, S. Kim, J. Choi, J. Park, D. Kim, and J. H. Ahn, “Sharp: A short-word
hierarchical accelerator for robust and practical fully homomorphic encryption,”
in Proceedings of the 50th Annual International Symposium on Computer
Architecture, 2023, pp. 1–15.

[37] J. Kim, G. Lee, S. Kim, G. Sohn, J. Kim, M. Rhu, and J. H. Ahn, “Ark:
Fully homomorphic encryption accelerator with runtime data generation and
inter-operation key reuse,” arXiv preprint arXiv:2205.00922, 2022.

[38] S. Kim, J. Kim, M. J. Kim, W. Jung, M. Rhu, J. Kim, and J. H. Ahn, “Bts: An
accelerator for bootstrappable fully homomorphic encryption,” arXiv preprint
arXiv:2112.15479, 2021.

[39] E. Lee, J.-W. Lee, J. Lee, Y.-S. Kim, Y. Kim, J.-S. No, and W. Choi,
“Low-complexity deep convolutional neural networks on fully homomorphic
encryption using multiplexed parallel convolutions,” in International
Conference on Machine Learning. PMLR, 2022, pp. 12 403–12 422.

[40] J.-W. Lee, H. Kang, Y. Lee, W. Choi, J. Eom, M. Deryabin, E. Lee, J. Lee,
D. Yoo, Y.-S. Kim et al., “Privacy-preserving machine learning with fully
homomorphic encryption for deep neural network,” IEEE Access, vol. 10, pp.
30 039–30 054, 2022.

[41] W.-j. Lu, Z. Huang, C. Hong, Y. Ma, and H. Qu, “Pegasus: bridging polynomial
and non-polynomial evaluations in homomorphic encryption,” in 2021 IEEE
Symposium on Security and Privacy (SP). IEEE, 2021, pp. 1057–1073.

[42] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and learning with
errors over rings,” in Advances in Cryptology – EUROCRYPT 2010, H. Gilbert,
Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 1–23.



[43] D. Micciancio and J. Sorrell, “Ring packing and amortized fhew bootstrapping,”
Cryptology ePrint Archive, 2018.

[44] T. Morshed, M. M. Al Aziz, and N. Mohammed, “Cpu and gpu accelerated
fully homomorphic encryption,” in 2020 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST). IEEE, 2020, pp. 142–153.

[45] K. Nam, H. Oh, H. Moon, and Y. Paek, “Accelerating n-bit operations over tfhe
on commodity cpu-fpga,” in Proceedings of the 41st IEEE/ACM International
Conference on Computer-Aided Design, 2022, pp. 1–9.

[46] Norton and Silberger, “Parallelization and performance analysis of the cooley–
tukey fft algorithm for shared-memory architectures,” IEEE Transactions on
Computers, vol. 100, no. 5, pp. 581–591, 1987.

[47] A. Putra, Y. Chen, J. Kim, J.-Y. Kim et al., “Strix: An end-to-end streaming ar-
chitecture with two-level ciphertext batching for fully homomorphic encryption
with programmable bootstrapping,” arXiv preprint arXiv:2305.11423, 2023.

[48] M. S. Riazi, K. Laine, B. Pelton, and W. Dai, “Heax: An architecture for
computing on encrypted data,” in Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2020, pp. 1295–1309.

[49] N. Samardzic, A. Feldmann, A. Krastev, S. Devadas, R. Dreslinski,
C. Peikert, and D. Sanchez, “F1: A fast and programmable accelerator
for fully homomorphic encryption,” in MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO ’21. New York,
NY, USA: Association for Computing Machinery, 2021, p. 238–252. [Online].
Available: https://doi.org/10.1145/3466752.3480070

[50] N. Samardzic, A. Feldmann, A. Krastev, N. Manohar, N. Genise, S. Devadas,
K. Eldefrawy, C. Peikert, and D. Sanchez, “Craterlake: a hardware accelerator
for efficient unbounded computation on encrypted data,” in Proceedings of
the 49th Annual International Symposium on Computer Architecture, 2022,
pp. 173–187.

[51] K. Shivdikar, Y. Bao, R. Agrawal, M. Shen, G. Jonatan, E. Mora, A. Ingare,
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