
IOMMU Deferred Invalidation Vulnerability:
Exploit and Defense

Chathura Rajapaksha, Leila Delshadtehrani, Richard Muri, Manuel Egele, Ajay Joshi
Department of ECE, Boston University, {chath, delshad, rmuri, megele, joshi}@bu.edu

Abstract—Direct Memory Access (DMA) introduces a security
vulnerability as peripherals are given direct access to system memory,
exposing privileged data to potentially malicious Input/Output
(IO) devices. Modern systems are equipped with an IO Memory
Management Unit (IOMMU) to mitigate such DMA attacks. The OS
uses the IOMMU and IO page tables to map and unmap a designated
memory region before and after the DMA operation, constraining
each DMA request to the approved region. IOMMU protection comes
at the cost of reduced throughput in IO-intensive workloads, mainly
due to the high IOTLB invalidation latency. The Linux OS eliminates
this bottleneck by deferring the IOTLB invalidation requests to
a later time. This opens a vulnerability window during which a
memory region is unmapped but the relevant IOTLB entry remains.
In this paper, we present a proof-of-concept exploit, empirically
demonstrating that a malicious DMA-capable device can use this
vulnerability window to leak data used by other devices. Furthermore,
we propose hardware-assisted mitigation for the deferred invalidation
vulnerability by making minor changes to the existing IOMMU
hardware and OS software. We implemented the proposed mitigation
in the Intel IOMMU implementation in QEMU and the Linux kernel.
Our security evaluation showed that our proposed mitigation success-
fully mitigated the deferred invalidation vulnerability and provided
12.7% higher throughput compared to the strict invalidation mode.

Index Terms—IOMMU, DMA attacks

I. INTRODUCTION

Modern computing systems are complex with many In-
put/Output (IO) devices such as Network Interface Cards (NICs)
and accelerators connected to them. Direct Memory Access
(DMA) allows IO devices to access system memory directly
without involving the Central Processing Unit (CPU). However,
DMA poses a threat to data confidentiality, integrity and avail-
ability, as IO devices are given direct access to system memory.

Attacks carried out by malicious DMA devices have been a
concern for the security of computing systems for more than
a decade [1], [2]. Trivial DMA attacks [1]–[4] were mitigated
with the introduction of the IO Memory Management Unit
(IOMMU) [5], [6]. The IOMMU allows IO devices to use IO
Virtual Addresses (IOVAs) to access the system memory. The
IOMMU uses IO page tables maintained by the OS to verify
the read/write permission of each memory access and translate
IOVAs to Physical Addresses (PAs).

The device driver of a DMA-capable IO device is responsible
for mapping and unmapping memory for DMA operations. The
IOMMU contains an IO Translation Lookaside Buffer (IOTLB)
to cache recently translated IOVA-to-PA mappings. When the
memory mapped for a DMA transaction is unmapped, the OS
first sends an invalidation request to the IOMMU to invalidate the
relevant IOTLB entries and then updates the IO page tables to
prevent the devices from accessing the particular memory region.
The IOTLB invalidation is known to take several thousand cycles
[7] and becomes a bottleneck for high-throughput IO operations.

To alleviate the effect of IOTLB invalidation on the IO through-
put, Linux has adopted deferred invalidation. In the deferred
invalidation mode, IOTLB invalidation requests are batched, and
a global IOTLB invalidation is performed every 10 ms or 256
invalidation requests. This deferred invalidation opens a vulnera-
bility time window during which a DMA buffer is unmapped but
the IOTLB entry for the buffer access is still valid, allowing the IO
device to still access the physical address of the DMA buffer. As
we demonstrate in Section IV, a malicious IO device can use this
vulnerability window to read or write to the data of another device.

Over the last decade, two noteworthy software optimizations
have been proposed [8], [9] to mitigate deferred invalidation
vulnerability. However, these solutions either struggle to
scale with increasing IO throughput demands [8] or suggest
optimizations tailored exclusively to network workloads, which
are incompatible with other IO workloads like storage [9].

In this paper, we present a proof-of-concept exploit and
a hardware-assisted mitigation for the IOMMU deferred
invalidation vulnerability. We show, for the first time (to the best
of our knowledge), how a malicious DMA-capable IO device
can use the deferred invalidation vulnerability to access the data
of another IO device. Additionally, the exploit we present is
also applicable to the IOMMU sub-page vulnerability [10], [11],
another IOMMU-related known vulnerability.

To address the need for secure, low-overhead DMA operations
for high-throughput IO workloads (e.g., GPU-intensive computer
games, multi-threaded writes to NVMe storage, 200 Gbps net-
work), we propose a hardware-assisted mitigation for the deferred
invalidation vulnerability. Our solution reduces the large IO latency
associated with strict invalidation while providing the same level
of security guarantee, by preventing the reuse of stale IOTLB
entries until the IOTLB is invalidated. The proposed mitigation for
deferred invalidation vulnerability works at the IOMMU hardware
level, making it compatible with any DMA operation.

We demonstrate the proof-of-concept exploit on an x86 machine
emulated by QEMU [12]. The emulated machine contains two
IO devices — a storage device connected through AHCI and an
Ethernet connection through an Intel 82574L NIC — and an Intel
IOMMU. We show that the malicious NIC can take advantage of
the deferred invalidation of its unmapped memory to access data
that was read from the storage device. We also implement and
evaluate the proposed mitigation within the QEMU Intel IOMMU
implementation using the same QEMU setup we used for the ex-
ploit. The proposed mitigation achieves 12.7% higher throughput
compared to the strict invalidation mode while providing the same
security guarantees. We chose QEMU for the implementation and
evaluation because support for an IOMMU is not available in open-
source hardware. Additionally, we demonstrate that the variations
in the average network throughput of QEMU in different IOMMU

modes follow the same trend as that of a real hardware system
(Section VI). In summary, we make the following contributions:
1) We demonstrate that IOMMU deferred invalidation can be

used by a malicious DMA-capable device to leak the DMA
data of other devices that utilize the same IOMMU. To the best
of our knowledge, this is the first published proof-of-concept
exploit for the IOMMU deferred invalidation vulnerability.

2) We propose a low-overhead, hardware-assisted mitigation for
the deferred invalidation vulnerability, which is compatible
with any DMA operation. The proposed mitigation involves
minor modifications to the existing IOMMU hardware and
Linux OS software.

3) We implement the proposed mitigation in QEMU and
open-source it1 along with the proof-of-concept deferred
invalidation exploit.

II. RELATED WORK

The relevant IOMMU work can be divided into two main
categories: (1) DMA attacks or exploits in the presence of an
IOMMU [10], [11], [13], [14], and (2) performance or security
[7]–[9], [15] improvements related to the IOMMU. Morgan et al.
[13], [14] demonstrated an IOMMU-bypass exploit by updating
the IO page tables at boot time before the IOMMU is enabled
using a malicious peripheral. Thunderclap [10] explores how
IOMMU protection is used in different OSes and demonstrates
several DMA attacks that exploit the sub-page vulnerability in the
IOMMU using a malicious DMA-capable device. In the aftermath
of Thunderclap, Linux added support for software bounce buffers
[16] as a mitigation to sub-page vulnerabilities in IOMMU.
Markuze et al. [11] extend the sub-page vulnerability exploits
demonstrated in Thunderclap by characterizing different variants
of sub-page vulnerabilities, providing a complete picture of the
attack surface. All the aforementioned works exploit and analyze
sub-page vulnerabilities related to the IOMMU. In contrast, we
focus on the deferred invalidation vulnerability and demonstrate
that it can be exploited using a malicious DMA-capable device.

Markuze et al. [8] propose a software-based method to provide
complete IOMMU protection using a set of permanently mapped
pages (a.k.a. shadow buffers) in the IOMMU, while achieving
better IO throughput compared to the IOMMU strict invalidation
mode. Device access is restricted to shadow buffers and DMAed
data is copied from/to these buffers, achieving byte-granular
protection. Shadow buffers mitigate the deferred invalidation
vulnerability because IOTLB invalidation is never required due to
permanently mapped DMA buffers used by the devices. However,
shadow buffers do not scale well with growing IO throughput
demands due to their high CPU and memory overhead caused by
copying DMAed data between buffers and memory duplication.
Markuze et al. proposed DMA Aware Malloc for Networking
(DAMN) [9] to alleviate the overhead of shadow buffers specif-
ically for network workloads. DAMN selectively copies parts of
the DMA buffer that are processed by the OS kernel (e.g., Ethernet
header). DAMN is capable of achieving IO throughput comparable
to the throughput of IOMMU in deferred mode. Unfortunately,
DAMN is only compatible with network IO workloads, and does
not improve workloads such as storage and zero-copy IO.

1https://github.com/bu-icsg/IOMMU-DIV

TABLE I
#CPU CYCLES IOMMU NEEDS TO PROCESS AN INVALIDATION DESCRIPTOR.

Avg Min Max
Intel Xeon Silver 4314 @ 2.40GHz 2548 1652 24394
AMD EPYC 7402P @ 2.80GHz 6968 420 38010

In contrast to the aforementioned works, we propose a
hardware-assisted alternative to strict invalidation. Our solution
can mitigate the deferred invalidation vulnerability with a
comparatively lower performance cost and it has a broader
applicability compared to DAMN [9] due to its compatibility with
any DMA workload, including storage workloads. Furthermore,
our solution is scalable compared to shadow buffers [8] as it
does not require additional CPU time and memory to operate.

III. BACKGROUND

The goal of this section is to familiarize the reader with the
IOMMU operation, security, and IO throughput performance of
different IOMMU modes. All experiments in this section were
conducted on CloudLab [17] machines. For network throughput
experiments, two machines with an Intel Xeon Silver 4314
CPU, an Intel IOMMU and 244GB RAM were connected
through dual-port Mellanox ConnectX-6 NICs with a 200 Gbps
connection between them. Linux uses the IOMMU in two modes:
strict invalidation and deferred invalidation. We first provide
an overview of how the IOMMU operates; then, we explain in
detail about each IOMMU mode.

A. IOMMU Operation

OSes use the IOMMU to constrain the DMA of IO devices to
designated DMA buffers. When DMA is used for receiving data
from a device, the device driver first allocates the memory for the
DMA buffer. Then the driver requests the kernel to map the physi-
cal address of the DMA buffer to an IO virtual address. The kernel
does this by creating an IO page table entry in the IO page table for
the device. Each page table entry contains the IOVA-to-PA trans-
lation information and access permission (read/write/both) for the
PA. Furthermore, address translation and access control through
IO page tables happen in 4 KB memory chunks called pages2.

Next, the device driver signals the device to initiate the DMA
transaction. The device accesses the DMA buffer using the
IOVA of the buffer, and the IOMMU performs the IOVA to
PA translation by walking the IO page table for the device and
verifying the access permission to the PA before completing
the translation. The IOMMU caches the recent IOVA-to-PA
translations along with access permission in an IOTLB.

Once the DMA operation is completed, the device should no
longer have access to the DMA buffer, so that the memory can be
reallocated without breaking data confidentiality and integrity. For
this purpose, the device driver unmaps the DMA buffer and the OS
kernel sends an invalidation request to the IOTLB to invalidate the
entry containing the IOVA-to-PA translation of the DMA buffer.

B. Strict Invalidation

In this mode, IOTLB invalidation is performed strictly during
the IOVA unmapping process itself. IOTLB invalidation is known

2IO page size can vary depending on the OS and IOMMU hardware.

0 50 100 150 200 250
Throughput (Gbps)

No
IOMMU

IOMMU
Deferred

IOMMU
Strict

197.889

197.668

140.398

Fig. 1. Linux TCP throughput over 200 Gbps Ethernet, measured with 16
netperf [18] instances running in parallel for three different IOMMU modes.

to take more than 1000 CPU clock cycles [7]. We conducted
an experiment to confirm whether this is still true with the
modern IOMMU implementations. We determined the IOTLB
invalidation latency by instrumenting the Linux kernel (6.4.0)
source with RDTSCP instructions and measuring the average
cycle count taken by the IOMMU to process a single invalidation
descriptor. As shown in Table I, IOTLB invalidation still has
a high latency in both Intel (Xeon Silver 4314) and AMD
(EPYC 7402P) systems. We show in subsection III-D that this
high latency causes the IO throughput to drop, especially in
high-throughput IO workloads where IOVA mapping/unmapping
happens millions of times per second.

C. Deferred Invalidation

To alleviate the aforementioned bottleneck, OSes have adopted
deferred invalidation. In this mode, IOTLB entries are not
invalidated strictly during the unmap process. Instead, IOTLB
invalidation descriptors are queued in a per-CPU queue and all
IOTLB entries belonging to an IOMMU domain are invalidated
when the number of the descriptors in the queue exceeds 256 or
every 10ms, whichever happens first3. Note here that an IOMMU
domain is a set of address mappings and access rights that can be
shared by multiple devices [6]. In most cases, each DMA-capable
device is allocated its own domain. Therefore, invalidation of an
IOTLB entry can be delayed by at most 10ms, leaving a time
window during which a device has access to a physical memory ad-
dress that may not belong to it. We discuss how a malicious device
can exploit this deferred invalidation vulnerability in Section IV.

D. IOMMU Performance

Figure 1 shows the effect of different IOMMU modes on the
maximum throughput of a multi-gigabit (200 Gbps) network
connection in a modern computing system. We observe that
the strict invalidation mode reduces the network throughput by
28.97% compared to the deferred invalidation mode.

IV. EXPLOITING IOMMU DEFERRED INVALIDATION

In this section, we demonstrate how the deferred invalidation
vulnerability can be used by a malicious IO device to leak data of
other devices. When the OS defers the invalidation of an IOTLB
entry, it can lead to two vulnerable scenarios:
(1) After receiving DMA data from a device, the OS kernel unmaps
the DMA buffer and then starts processing the data. However, the
device can still access the physical address of the DMA buffer
through a stale IOTLB entry. Such access can enable “time of

3This is the behavior of the Linux kernel, other OSes may perform invalidation
using a different criteria.

x86 CPU 2 Cores

System Bus

System Memory

Intel IOMMU

SATA
Storage
Device

Intel
82574L

NIC

PCI Bus

Linux OS

fio and netperf

Fig. 2. Overview of the QEMU-emulated system that was used for IOMMU
deferred invalidation proof-of-concept exploit.

check to time of use” (TOCTTOU) attacks for DMA-writable
buffers, e.g., modifying a packet after it passes firewall checks [9].
(2) After a device (device A) reads from a DMA buffer, the OS
frees the memory and may reallocate it immediately [19] to an-
other device (device B) that is performing DMA write. As we show
later in this section, this scenario can happen commonly during the
deferred invalidation time window. This is a vulnerability as device
A now has access to device B’s data through the stale IOTLB entry.

At a high level, scenario (1) poses a threat to data integrity while
scenario (2) poses a threat to the confidentiality of data. Below, we
present a proof-of-concept exploit based on the second scenario.

A. Threat Model

We assume there is a malicious DMA-capable device connected
internally to the system (e.g., a malicious SmartNIC, third-party
integrated accelerator). The rest of the system including the
IOMMU, other IO devices, and OS, works as expected and is
trusted at all times. Furthermore, we consider a system that is
protected against boot time DMA attacks [14]. The goal of the
malicious device is to snoop on the data accessed by other devices.

B. QEMU-based Proof-of-concept Exploit

System setup: We use a QEMU-emulated x86 machine with the
KVM hypervisor to demonstrate our proof-of-concept (QEMU
version 6.2.0). Figure 2 shows the high-level system we used in
QEMU. We have two devices connected to the system through
an Intel IOMMU: a malicious Intel 82574L NIC and a victim
SATA storage device. For this demonstration, the emulated
system runs Linux 6.4.0 in deferred IOMMU mode with two
CPU cores and 1 GB of memory. We used a system with an
Intel Xeon Silver 4114 CPU as the host.
Software setup: The first step for exploiting deferred invalidation
(with the second scenario) is to generate DMA traffic for both
NIC and the storage device simultaneously so that a PA allocated
for NIC gets reallocated to the storage device within a deferred
invalidation time window. For this purpose, we used netperf [18]
TCP STREAM and fio [20] random read benchmarks to generate
DMA traffic for the NIC and the storage device, respectively.
We used the QEMU event trace feature to confirm that PAs of
the NIC indeed get reallocated to the storage device frequently
within a deferred invalidation time window. We also required
a way to identify if the malicious DMA reads were able to read
the DMA data of the storage device. For this purpose, we filled
the storage device with a magic word (0xc0fecafe).
Malicious behavior: We integrated the malicious behavior into
the 82574L NIC by editing the relevant source code in QEMU.

We added the capability of maintaining a pool of IOVAs of the
DMA buffers used by the NIC for legitimate DMA reads. Then,
when the NIC performs a legitimate DMA access, we follow
it with a malicious DMA read request on a randomly selected
IOVA from the pool (which may or may not be successful). If
the malicious read request fails, we remove the IOVA from the
pool. In other words, we are trying to read the data at IOVAs
that were recently (and legitimately) used by the NIC, hoping
that the PA of the IOVA is mapped to another device while the
IOTLB entry of the legitimate access still remains.
Exploit: Figure 3 provides a detailed timeline of how the
malicious NIC was able to read the victim’s storage device DMA
data during a deferred invalidation window in our exploit. 1⃝ The
NIC device driver maps a memory region to the device for DMA,
starting at IOVA 0xff528000 which maps to PA 0xe670000.
2⃝ The NIC reads the data in the buffer through DMA and

the device driver unmaps and frees the memory. However,
IOTLB invalidation has not been performed yet (due to deferred
invalidation). (3⃝) At this point, the OS kernel considers PA
0xe670000 as unused and reallocates it to the storage device to
write data. 4⃝ Malicious NIC device reads the PA 0xe670000
through IOVA 0xff528000, leaking the data of the storage
device. The IOTLB entries created at 1⃝ and 3⃝ are invalidated
at 5⃝ and 6⃝, respectively. To check the exploit’s functionality,
we searched for the magic word, i.e., 0xc0fecafe in the
results of successful malicious DMA reads from the NIC.
Observations: We consistently observed the magic word in
the malicious DMA read results when the exploit is running,
indicating a successful exploit. The root-cause analysis for each
reported leakage revealed two causes: 1) deferred invalidation
vulnerability, and 2) sub-page vulnerability [8], [10], [11]. In
other words, the malicious behavior of the NIC is capable of
exploiting both these vulnerabilities. We discuss how sub-page
vulnerability (which is not the main focus of this paper) causes
data leakage in the following sub-section.

C. Data Leakage Through Sub-page Vulnerability

IOMMU enforces access control at the page granularity [5]
while DMA buffers used by IO devices can be smaller than
a page. For example, the default Maximum Transmission Unit
(MTU) is 1500 Bytes for an Ethernet packet, which is mapped to
a DMA buffer when transferring the packet through the Ethernet
controller. This mismatch of granularity between the IOMMU
protection and DMA buffer allocations can cause the DMA
buffers of two devices to get mapped to the same page. This
opens up the so-called sub-page vulnerability as each device
is given access to the data of the other device.

The leakage through sub-page vulnerability can happen in
the following scenario. The storage device uses the first half of
a page as a DMA buffer to write device data. In the meantime,
a DMA buffer of the NIC gets mapped to the second half of the
same page. However, due to sub-page vulnerability, a malicious
read from the NIC to the first half of the page will be successful,
causing a storage data leak.

V. HARDWARE-ASSISTED MITIGATION
FOR IOMMU DEFERRED INVALIDATION VULNERABILITY

A. Overview

We propose a low-overhead, hardware-assisted mitigation for
the deferred invalidation vulnerability. This method offers the
same security guarantees as strict invalidation but with a lower
performance overhead. Implementing this mitigation involves
minor adjustments to existing OS software and IOMMU hardware.
IOTLB invalidation latency: Prior work has shown IOTLB
invalidation latency as the cause for the high-performance cost of
strict invalidation [7], [9]. We take a step further and analyze the
IOTLB invalidation process and the factors that may contribute
to its high latency. To reduce the overall page table walk
latency, IOMMU implementations may cache intermediate paging
structure entries that are read during the page table walk [5]. An
IOMMU compatible with a 4-level IO page table may have up to
three paging-structure caches. When invalidating an IOTLB entry,
relevant entries in the paging-structure caches must be invalidated
to maintain the accuracy of the translations [5]. This process
involves a cache lookup and invalidation in each paging-structure
cache. Furthermore, IOTLB invalidation descriptors are provided
to hardware through a queue that resides in the system memory.
Therefore, the IOMMU performs a memory access to fetch the
invalidation descriptor, which adds up to the invalidation latency.

B. Mitigation

The proposed mitigation stems from the observation that
exploiting the deferred invalidation vulnerability requires a
malicious device to reuse outdated IOTLB entries (see Section IV).
So rather than strictly performing IOTLB invalidation, which
significantly impacts performance (see Section III-B), we suggest
preventing the reuse of stale IOTLB entries during the deferred
invalidation window. We propose to do this by adding an indicator
bit to each IOTLB entry. For an IOTLB entry, this indicator bit
can be reset when we don’t want any DMA request to use the
IOTLB entry (after unmapping it). We argue that this prevention
of the reuse of a stale IOTLB entry incurs a lower performance
cost than an IOTLB invalidation during strict invalidation.
Functionality The indicator bit will be set to 1 when the IOTLB
entry is initialized. When the OS kernel unmaps an IOVA, the
IOMMU sets the indicator bit to 0 in the relevant IOTLB entry.
If during a memory access, we get an IOTLB hit that has the
indicator bit set to 0, the IOMMU returns a translation error, as this
can happen only due to a malicious activity or bug in the device,
thereby mitigating the exploitation of the deferred invalidation
vulnerability. It is important to note that the proposed mitigation
still requires the OS to perform deferred IOTLB invalidation, as
the mitigation itself does not perform IOTLB invalidation. In other
words, our mitigation relies on the IOMMU deferred invalidation
mode, which is the default mode of operation in Linux for Intel
and AMD systems. In summary, the proposed mitigation requires
two actions: 1) the OS software communicates the IOVA of a
DMA buffer to the IOMMU during its unmapping, and 2) the
IOMMU hardware marks the relevant IOTLB entry (if it exists)
for that IOVA as unusable by setting the indicator bit to 0.

IOMMU
Domain 2

PA=0xe670000 is unmapped

...
0xff528000 -> 0xe670000, read

...
0xbfe9d000 -> 0xe670000, write

...

IOTLB

IOMMU
Domain 3

Intel
82574L

NIC

SATA
Storage

4

Time

Device driver map
PA=0xe670000 to
IOVA=0xbfe9d000

Malicious NIC
devicel read

PA=0xe670000

Device driver /
kernel unmap

IOVA

Device driver map
PA=0xe670000 to
IOVA=0xff528000

DMA
Read

Domain 2
deferred

invalidation

Domain 3
deferred

invalidation

Device driver /
kernel unmap

IOVA

DMA
Write

5

63

3

21 1

Fig. 3. Timeline for the deferred invalidation proof-of-concept exploit.

C. Design and Implementation

When using our proposed mitigation approach, when we have
to reset the indicator bit during an IOVA unmap, we must perform
an IOTLB lookup, which requires the relevant IOVA and the
source ID of the device to which it is mapped. The source ID
serves as a unique identifier for each device connected to the
IOMMU, typically using the Bus:Device:Function (BDF) number
for PCI/PCIe devices. Therefore, the main design question that
we need to answer for implementing the proposed mitigation is:
How do we communicate the IOVA and the source ID of the
device to the IOMMU hardware when unmapping it? We decided
to include a dedicated memory-mapped register (which we call
HW_INV_REG) in the IOMMU hardware to receive IOVA and
source ID during their unmap process. This requires minimal
changes in both hardware and software as IOMMU already has
memory-mapped configuration registers and the OS has the infras-
tructure in place for accessing these registers. We have successfully
implemented this proposed mitigation in the QEMU Intel IOMMU
implementation and the Linux kernel version 6.4.0. Further details
regarding the specific hardware and software changes necessary
to implement this mitigation are discussed below.
IOMMU Hardware Modifications The Intel IOMMU
specification [5] limits the possible IOVA size to 56 bits for a
five-level IO page table and 47 bits for a four-level IO page table.
The QEMU Intel IOMMU implementation supports a four-level
IO page table, allowing us to use 47 bits for the IOVA. Hence,
we are able to use a 64-bit control register (HW_INV_REG)
for capturing both IOVA and the 16-bit source ID. Furthermore,
a single bit was added to each IOTLB entry as the indicator
bit. Additionally, we changed the QEMU Intel IOMMU behavior
according to the functionality of the mitigation as follows: When
an IOTLB entry is first initialized, the indicator bit is set to 1.
When unmapping an IOVA, OS writes the IOVA and relevant
source ID to HW_INV_REG. Upon this write, the IOMMU
hardware triggers an IOTLB lookup with the provided IOVA and
source ID. If the lookup was a hit with the indicator bit equal
to 1, the indicator bit in the IOTLB is reset to 0 (indicating that
the IOTLB entry is now unusable). If a translation request to
the IOMMU results in an IOTLB hit and the indicator bit in the
IOTLB entry is already 0, IOMMU returns a translation error.
OS Software Modifications We first define the address of
HW_INV_REG in the Linux kernel Intel IOMMU driver. Then
we change the existing IOVA unmapping function in Linux to
concatenate the IOVA that is unmapped and its corresponding
source ID to a 64-bit word and write it to HW_INV_REG.

In Linux, it is possible for multiple IOVAs to unmap at the

No IOMMU IOMMU
Deferred

IOMMU
Strict

Strict+SWBB0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
or

m
al

iz
ed

 N
et

w
or

k
Th

ro
ug

hp
ut

1 1

0.71 0.67

1.19

1

0.77 0.73

Baremetal Machine QEMU-emulated Machine

Fig. 4. Normalized network throughput of the real hardware machine and the
QEMU-emulated machine in different IOMMU modes and software bounce
buffers (SWBB) with strict mode (Strict+SWBB). Normalization is done with
respect to the throughput in deferred invalidation mode.

same time (by different threads), creating a race condition as
unmap operations contend for the HW_INV_REG register. To
avoid this, we acquire the existing mutex lock for writing to
the IOMMU CSRs and release it after the write.

VI. EVALUATION

In this section, we evaluate the proposed mitigation for the
IOMMU deferred invalidation vulnerability, in terms of security
and network throughput. We used the same QEMU-emulated
system that we used for the proof-of-concept exploit for the
evaluation. We justify our use of QEMU for performance
evaluation by providing an IO throughput trend comparison
between a QEMU-emulated system and a real hardware system in
Figure 4, where we show the normalized network throughput of the
QEMU-emulated system and a real hardware system in different
IOMMU modes. The network throughput of both systems roughly
follows the same trend. Therefore, we argue that any network
throughput performance changes that we observe in QEMU
due to our modifications will follow the same trend in a real
hardware system. We used the same system setup and throughput
numbers reported in section III-D for the real hardware system.
For the QEMU-emulated system, we used the hardware setup in
section III-D. The QEMU-based system has 8 CPU cores, 32GB
RAM, an Intel IOMMU, and an Intel 82574L NIC with KVM
enabled. All evaluations were conducted with Hyperthreading
and dynamic frequency scaling turned off in the host system.

A. Performance Evaluation
We used the QEMU setup mentioned above to evaluate the

performance impact of the proposed mitigation for the deferred

No I
OMMU

IO
MMU D

efe
rre

d

IO
MMU St

ric
t

HW-IN
V

St
ric

t+
SW

BB

HW-IN
V+SW

BB
0

1

2

3

4

5

6
Th

ro
ug

hp
ut

 (
G

bp
s)

5.524

4.725

3.506
3.952

3.469
3.823

Fig. 5. Network throughput performance of different IOMMU modes and our
proposed mitigation (HW-INV). We combined HW-INV with SW bounce buffers
(SWBB) to provide complete IOMMU protection.

invalidation vulnerability. For each configuration, we ran the
4 instances of netperf TCP STREAM benchmark for 10 seconds
and accumulated the achieved throughput. This experiment was
conducted 10 times for each configuration to get the average
accumulated throughput. Four netperf instances were used
as they provided the maximum network throughput in the
deferred invalidation mode (baseline). As shown in Figure 5, our
mitigation (HW-INV) was able to achieve 12.7% higher network
throughput compared to the IOMMU strict invalidation mode.

B. Security Evaluation
After implementing the proposed mitigation, we performed

a security evaluation to ensure that our exploit (described in
Section IV) is no longer effective, i.e., data leakage across devices
is not observed when our mitigation is present. For this evaluation,
we used the same setup used for the proof-of-concept exploit.
To account for randomness in the proof-of-concept exploit, we
performed the security evaluation 5 times for each configuration.
Our evaluation showed that our mitigation was able to block any
data leakage due to deferred IOMMU invalidations. However,
we observed slight data leakage (from the storage device). Our
root-cause analysis showed that this leakage was purely due to
sub-page vulnerability, which we observed for strict invalidation
mode as well. To address sub-page vulnerability, we relied
on the existing software-based mitigation in the Linux kernel,
i.e., software bounce buffers [16], due to its low-performance
overhead. We then combined our proposed mitigation with SW
bounce buffers to provide complete IOMMU protection. With
this configuration, we no longer observed the leakage.

As shown in Figure 5, the proposed mitigation combined with
software bounce buffers mitigation (HW-INV+SWBB) achieved a
10.2% throughput gain compared to the combination of IOMMU
strict mode and SW bounce buffers (Strict+SWBB).

VII. DISCUSSION

We demonstrated a proof-of-concept exploit for the IOMMU
deferred invalidation vulnerability and its mitigation using a
QEMU-emulated system. In this section, we briefly discuss
considerations for adapting the exploit and mitigation to a real
hardware system. Exploiting the deferred invalidation in a real

hardware system can be demonstrated using an FPGA device
(similar to Thunderclap [10]), which we leave for future work.
The IOTLB size should be considered when reproducing our
exploit in a real hardware system as the IOTLB size of a real
system can be considerably smaller (32 [15]) than that of QEMU
(1024). However, the malicious device can still keep a translation
in the IOTLB by regularly using it so that it does not get evicted.

To implement the proposed mitigation in a real system, we
need access to the IOMMU hardware design. However, this was
not possible as there was no open-source IOMMU implementation
available. Instead, we used QEMU for our implementation. Section
VI details our experiments that show how the IO throughput perfor-
mance of a QEMU-emulated system and a real system correlate.

VIII. CONCLUSION

We have demonstrated that the deferred invalidation
vulnerability can be exploited with a DMA-capable malicious
device. Operating systems use IOMMU strict invalidation mode
to mitigate the deferred invalidation vulnerability at the cost of
reduced IO throughput for IO-intensive workloads. We proposed
an alternative, low-overhead mitigation for deferred invalidation
vulnerability with minimal changes to the existing IOMMU
hardware and OS software. Our proposed mitigation achieved
12.7% higher network throughput compared to strict invalidation
mode in a QEMU-emulated system.

ACKNOWLEDGMENT
This work was funded in part by NSF Award 1916393.

REFERENCES

[1] M. Becher et al., “Firewire: all your memory are belong to us,” in
CanSecWest Applied Security Conference, 01 2005.

[2] B. D. Carrier and J. Grand, “A hardware-based memory acquisition
procedure for digital investigations,” Digit. Investig., 2004.

[3] G. Beniamini, “Over the air: Exploiting broadcom’s wi-fi stack (part 2),”
https://lwn.net/Articles/786558/, 2017.

[4] J. FitzPatrick and M. Crabill, “Stupid pcie tricks, featuring the nsa playset,”
in DEFCON 22, 2014.

[5] “Intel virtualization technology for directed i/o, revision 4.0,” 2022.
[6] “Amd i/o virtualization technology (iommu) specification, rev 3.07,” 2022.
[7] M. Malka et al., “Riommu: Efficient iommu for i/o devices that employ

ring buffers,” in ASPLOS ’15, 2015, p. 355–368.
[8] A. Markuze et al., “True iommu protection from dma attacks: When copy

is faster than zero copy,” in ASPLOS ’16, 2016, p. 249–262.
[9] A. Markuze et al., “Damn: Overhead-free iommu protection for networking,”

in ASPLOS ’18, 2018.
[10] A. T. Markettos et al., “Thunderclap: Exploring vulnerabilities in operating

system IOMMU protection via DMA from untrustworthy peripherals,” in
NDSS’19, 2019.

[11] A. Markuze et al., “Characterizing, exploiting, and detecting dma code
injection vulnerabilities in the presence of an iommu,” in EuroSys ’21, 2021.

[12] F. Bellard, “Qemu, a fast and portable dynamic translator,” in USENIX
Annual Technical Conference, 2005.

[13] B. Morgan et al., “Bypassing iommu protection against i/o attacks,” in
”LADC ’16, 10 2016, pp. 145–150.

[14] B. Morgan et al., “Iommu protection against i/o attacks: A vulnerability
and a proof-of-concept,” Journal of the Brazilian Computer Society, vol. 24,
12 2018.

[15] N. Amit et al., “Iommu: Strategies for mitigating the iotlb bottleneck,”
in ISCA 2010, 2010, pp. 256–274.

[16] M. Rybczyńska, “Bounce buffers for untrusted devices,”
https://lwn.net/Articles/786558/.

[17] D. Duplyakin et al., “The design and operation of CloudLab,” in USENIX
Annual Technical Conference (ATC), Jul. 2019, pp. 1–14.

[18] “Netperf – a network performance benchmark,”
https://github.com/HewlettPackard/netperf.

[19] J. Corbet, “Hot and cold pages,” https://lwn.net/Articles/14768/, 2002.
[20] J. Axboe, “Flexible i/o tester,” https://github.com/axboe/fio.

