
SOPHIE: A Scalable Recurrent Ising Machine
Using Optically Addressed Phase Change Memory

Guowei Yang∗, Sina Karimi∗, Carlos A. Rı́os Ocampo†, Ayse K. Coskun∗, Ajay Joshi∗
∗Boston University, †University of Maryland, College Park

{guoweiy, sikarimi, acoskun, joshi}@bu.edu, riosc@umd.edu

Abstract—Ising problems are nondeterministic-polynomial-
hard (NP-hard) problems prevalent in various domains, such as
statistical physics, circuit design, and machine learning. They
pose significant challenges for traditional algorithms and ar-
chitectures. Researchers have recently developed nature-inspired
Ising machines to tackle these optimization problems efficiently.
Many optimization problems can be mapped to the Ising model,
and physical laws will drive the Ising machine towards the
solution. However, existing Ising machines suffer from scalability
issues, i.e., performance drops when problem sizes exceed their
physical capacity.

In this paper, we propose SOPHIE, a Scalable Optical PHase-
change memory (OPCM) based Ising Engine. SOPHIE inte-
grates architectural, algorithmic, and device optimizations to
address scalability challenges in Ising machines. We architect
SOPHIE using 2.5D integration, where we integrate a controller
chiplet, a DRAM chiplet, laser sources, and multiple OPCM
chiplets. SOPHIE utilizes OPCMs to perform matrix-vector
multiplications efficiently. Our symmetric tile mapping at the
architecture level reduces approximately half of the OPCM array
area, enhancing the scalability of SOPHIE. We use algorithmic
optimizations to efficiently handle large problems that cannot fit
within hardware constraints. Specifically, we adopt a symmetric
local update technique and a stochastic global synchronization
strategy. These two algorithmic approaches decompose large
problems into isolated tiles, reduce computation requirements,
and minimize communication in SOPHIE. We apply device-level
optimizations to adopt the modified algorithm. These device-level
optimizations include employing bi-directional OPCM arrays and
dual-precision analog-to-digital converters. SOPHIE is 3× faster
than the state-of-the-art photonic Ising machines on small graphs
and 125× faster than the FPGA-based designs on large problems.
SOPHIE alleviates the hardware capacity constraints, offering a
scalable and efficient alternative for solving Ising problems.

Index Terms—optical computing, phase change memory, Ising
machine, processing-in-memory

I. INTRODUCTION

Combinatorial optimization problems pervade numerous
domains, such as network routing, scheduling, and circuit
design [1]–[3]. These problems are typically nondeterministic-
polynomial (NP) hard. Thus, conventional von Neumann ar-
chitectures often fail to provide efficient solutions as the scale
and complexity of these optimization problems grow [4].
Even after applying heuristic approximation approaches, the
computation time for combinatorial optimization is still long
because it takes many iterations to reach the answer. For
example, the max-cut problem would take up to 10 minutes for
a small graph with 3000 nodes [5]. Consequently, researchers

This research was partially funded by the NSF CCF 2131127 grant.

have been exploring non-conventional architectures to solve
combinatorial optimization problems more efficiently.

Ising machines stand out as promising non-von Neumann
architectures for solving combinatorial optimization problems.
By mapping combinatorial optimization onto Ising machines,
these problems can be represented as Ising models. The
Ising model, originating from statistical mechanics, provides
a framework for understanding the behavior of spins within a
system. The Ising machine seeks to minimize the energy of the
Ising model, offering high-performance and energy-efficient
solutions to the combinatorial problems mapped to the Ising
model.

Existing implementations of Ising machines can be cate-
gorized into machines implementing physics-based coupling
and those implementing computation-based coupling. Physics-
based Ising machines encode couplings into physical connec-
tions. Examples of this type of machine include D-Wave quan-
tum annealers [6], electronic Oscillator-based Ising Machines
(OIM) [7], and Bistable Resistively-coupled Ising Machines
(BRIM) [8]. While these machines deliver notable speedup and
energy efficiency compared to conventional architectures, they
show a significant speedup drop when the problem mapped to
them is larger than the hardware capacity of the machine.

Computation-based Ising machines simulate node connec-
tions through computations like matrix multiplication, offering
enhanced support for graphs with dense connections. Ex-
amples of these machines include Coherent Ising Machines
(CIM) [9] and Integrated Nanophotonic Recurrent Ising Sam-
pler (INPRIS) [4]. Computation-based Ising machines also
suffer from significant performance degradation for prob-
lems larger than their capacity because of glue computa-
tion and communication overhead. Additionally, computation-
based Ising algorithms are memory-bound on traditional elec-
tronic devices like GPUs [10], and moving the coupling
coefficients between memory and compute leads to significant
time and energy overheads. However, computation-based Ising
machines are not limited by physical constraints of problem
size. Therefore, they are easier to scale to solve larger prob-
lems.

In this work, we introduce SOPHIE, a Scalable Opti-
cal PHase-change memory (OPCM) based Ising Engine.
SOPHIE is the first Ising machine employing OPCM and
uses a cross-layer approach that combines algorithm, de-
vice, and architecture-level optimizations to simultaneously
achieve scalability and speedup. A key design choice in

SOPHIE is using OPCM, which has emerged as a promising
processing-in-memory (PIM) device [11]. By storing matrices
within an array of phase change material (PCM) cells and
leveraging photonic signals for reading and writing the cells,
OPCM offers substantial advantages over traditional electronic
devices in terms of performance and energy efficiency for
Matrix-Vector Multiplication (MVM) [11]. OPCMs feature
ultra-compact footprints (< 10 µm), yet strong amplitude
modulations, in a multilevel manner, which allows to cod-
ify information in the optical transmission of a photonic
waveguide [12], [13]. These features are an advantage over
conventional thermo-optical (TO) and electro-optical (EO)
modulators, whose weaker optical modulation makes photonic
MVM units, such as Mach-Zehnder interferometer (MZI) and
micro-ring resonator (MRR) arrays, too large and difficult to
scale [14]. Moreover, OPCMs’ behavior is nonvolatile owing
to the stable amorphous and crystalline states of PCMs, mak-
ing them, in addition, a more energy-efficient computing de-
vice over volatile TO and EO modulators. The combination of
nonvolatility and strong amplitude modulations in a multilevel
manner enables PIM capability. This means matrix elements
can be stored within PCM cells, and computations can be
performed directly on them. PIM capability diminishes the
time and energy required to transfer large coupling matrices,
rendering OPCM a prime choice for computation-based Ising
machines.

While OPCMs can improve the performance and efficiency
of computation-based Ising machines, scalability still remains
a critical concern, motivating a cross-layer algorithm, device,
and architecture design. When supporting a graph with n
nodes, OPCM must accommodate the n×n adjacency matrix.
Since each OPCM cell occupies a 30×30 µm2 area, and real-
world graphs may contain more than tens of thousands of
nodes, it is impossible to store such a large graph in OPCM.
Therefore, SOPHIE breaks down the large matrix into smaller
tiles and distributes them across multiple OPCM arrays. To
avoid creating bottlenecks in inter-tile communication, we
introduce a novel symmetric local update technique for the
Ising algorithm at the algorithm level. By isolating most
of the iterations within local tiles, our technique minimizes
inter-tile communication with minimal impact on solution
quality. Additionally, we propose stochastic global iteration to
further reduce communication overhead among tiles. At the
device level, we configure the OPCM array and its electrical
peripherals to align with the requirements of the enhanced
algorithm. We employ dual-precision analog-to-digital con-
verters (ADCs) to improve the computation’s performance and
energy efficiency. We also use bi-directional OPCM arrays
to support transposed MVM operations. At the architecture
level, SOPHIE employs symmetric tile mapping to reduce the
accelerator’s area and enhance its scalability.

We implement our enhanced Ising algorithm in Python
for functional simulation, which enables testing the solution
quality and determining the number of iterations required for
convergence. We build custom models to calculate the power,
performance, and area (PPA) results of our accelerator.

Our specific contributions are summarized as follows:
• OPCM-based Ising Machine: We develop SOPHIE, a

computation-based scalable Ising machine employing
OPCMs. OPCMs can perform MVM efficiently, which is
suited for computation-based Ising machines. The OPCM
array and its electrical peripherals are customized to line
up with the enhanced algorithm. These customizations
include the utilization of dual-precision ADCs and the
ability to perform transposed MVMs.

• Symmetric Local Update Technique: We introduce a sym-
metric local update technique for the existing recurrent
Ising machine algorithm [15]. This method partitions
the recurrent computation on a large matrix into smaller
tiles, allowing most computations to be confined within
symmetric tile pairs. This approach significantly reduces
inter-tile communication, which is a major bottleneck of
the scalability for larger graphs.

• Stochastic Global Iteration: We present a stochastic
global iteration technique that further reduces the overall
computation demand and inter-tile communication while
maintaining acceptable solution quality. This approach
speeds up the computation, especially on large graphs.

• Symmetric Tile Mapping: The coupling matrix of an
Ising problem is symmetric and can be decomposed into
tiles. We map a pair of symmetric tiles to one OPCM
array to save approximately half of the array area. This
approach makes the design more scalable, especially for
large graphs.

We evaluate SOPHIE using small and large graphs from
GSET and K-graphs generated by Rudy graph generator [16].
Our solution can reduce half of the OPCM area and reduce
25% − 50% of the computation demand and global synchro-
nization overhead while maintaining acceptable solution qual-
ity. SOPHIE demonstrates 3× speedup against state-of-the-art
photonic Ising machines on small graphs and 125× speedup
against FPGA-based designs on large problems. SOPHIE
alleviates the hardware capacity constraints, offering a scalable
and efficient alternative for addressing Ising problems.

II. BACKGROUND

In this section, we start by explaining the principles behind
OPCM cells. Next, we will discuss Ising machines, outlining
their types and characteristics. Finally, we present photonic
recurrent Ising sampler (PRIS) algorithm [15], one of the
proposed methods for probabilistically finding the ground state
of an arbitrary Ising problem, which we use as a reference
point.

A. OPCM Background

An OPCM cell consists of a part of an optical waveguide
with cladding-embedded Ge2Sb2Te5 (GST), as shown in Fig-
ure 1. The OPCM cell, also known as the GST cell, can switch
reversibly between the non-volatile fully amorphous and fully
crystalline states using heat stimuli. Interestingly, intermediate
states can also be achieved by controlling the ratio between

Fig. 1. Electrically programmed and optically addressed phase change
memory, also illustrating the in-memory processing concept: multiplication
between the input pulse amplitude and the OPCM transmittance.

amorphous and crystalline domains, thus achieving a semi-
continuous modulation [17]. Given that the crystalline state is
significantly more absorptive than the amorphous, each phase
state in the material translates into a unique transmittance level
of the waveguide, which is also non-volatile. Multi-bit data
can thus be encoded in the transmittance of each OPCM cell,
whose precise and reliable writing becomes crucial.

Writing on the GST cell, i.e., changing the phase state of the
cell, is done with a transition-triggering heat stimulus either
using electrical or optical pulses. Electrical switching employs
a variety of waveguide-embedded microheaters to induce the
reversible phase transition via Joule heating [18]. Previous
work has shown switching energies as low as 5.55 nJ and
860.71 nJ to amorphize and crystallize, respectively, using
graphene microheaters [19]. Optical switching, on the other
hand, uses the self-heating of the GST due to the power
it absorbs from pump optical pulses within the waveguide.
This method consumes less energy at the GST cell than
electrical switching: 460 pJ for amorphization and 140 pJ
for crystallization [17]. However, this method is challenging
to scale for large architectures due to the difficult on-chip
routing of pump pulses, which requires energy-hungry and
complex switching networks to reach each individual cell [20].
An alternative solution is to use a dedicated grating for out-
of-chip coupling into each GST cell. However, this solution
requires a larger footprint to accommodate the extra grating
couplers (≈ 20×20 µm2 to 50×50 µm2 each) and complicated
experimental setups [12]. Even though electrical switching
consumes more power than optical switching, features like
scalability, compatibility with microelectronics, and form fac-
tor make electrical switching a better solution.

State-of-the-art experiments have impressively reached up to
64 deterministic states within a single GST cell, enabling us to
store up to 6 bits per cell [21]. The multilevel response of GST
cells can, in turn, be exploited to perform in-memory analog
computation [22]. Scalar-scalar multiplication could be imple-
mented by mapping a multiplicand to the GST transmittance
and multiplier to the amplitude of the input pulse, as shown
in Figure 1. The free propagation of the pulse through the
GST cell renders the product of multiplicand and multiplier
at the output of the waveguide. When many GST cells are
cascaded in a cross-bar-like array, MVM can be achieved,
which is precisely the MVM approach we adopt here [12].

B. Ising Machines

Basics: The Ising model describes the Hamiltonian of a
system of a set of spins that are coupled together. Each spin
can take a value of −1 or +1 (σ1≤i≤N ∈ {−1,+1}). The
interaction between spins is described by matrix K, which is
a N × N symmetric matrix. In the absence of an external
magnetic field, the resulting Hamiltonian is:

H = −1

2

∑
1≤i,j≤N

σiKijσj (1)

The Ising problem consists of finding the ground state of
the spins coupled by matrix K of a quadratic Hamiltonian H
(Equation 1). Previous work has shown that many combinato-
rial problems can be reduced to an Ising problem [23]. Hence,
any solution for finding the ground state of an arbitrary Ising
model, which is an NP-hard problem, is also applicable in
other optimization problems as long as that can be reduced to
the Ising model.

There are no known algorithms that can find the exact
ground state of an arbitrary Ising model in polynomial time.
Therefore, researchers have employed heuristic and meta-
heuristic methods to approximate a solution near the ground
state [24]. Moreover, a physical system governed by the same
Hamiltonian inherently moves towards lower-energy states. To
find a solution to the Ising model, one can implement the
Ising machines either through physical systems or heuristic
algorithms. Remarkably, Ising machines exhibit significant
computational efficiency (measured in terms of time to solu-
tion and energy consumption), up to six orders of magnitude
higher than conventional systems when addressing problems
of comparable scale [5], [8]. By leveraging the mapping of
combinatorial problems to Ising problems and employing Ising
machines to solve these Ising problems, we can achieve sig-
nificantly faster and more efficient solutions to combinatorial
problems.

Solving max-cut problems using Ising Machine: An ex-
cellent example of combinatorial problems, readily mappable
to Ising problems, is the max-cut problem. Figure 2 shows a
max-cut problem solved by mapping the problem to an Ising
problem. Given an undirected graph, the max-cut problem is
to partition the nodes of the graph into two subsets so as
to maximize the total weight of the edges between the two
subsets [5]. Each node of the graph can be mapped to an Ising
spin, and each edge between two nodes represents the coupling
between the two spins. The state of the spin, either +1 or
−1, represents the subset where the node belongs. According
to the Ising model, the state of the spins will move towards
the ground state, which minimizes the energy of the Ising
model. The ground state of the Ising model is exactly the
solution to the max-cut problem. For example, Figure 2(a)
shows an undirected graph with five nodes initialized with
random states. Here, nodes with the color black have spins
with a value of −1, and nodes with the color white have spins
with a value of +1. Suppose the Ising machine eventually
reaches the ground state (either by using a physical system or

r�
:----------------:

(a)

7
/

/

(b)

/

I

Fig. 2. Solving a max-cut problem using the Ising model. (a) Each node
is mapped to a spin. Spins are coupled according to the graph’s adjacency
matrix. Nodes in black indicate spins with a value −1, and nodes in white
indicate spins with a value +1. (b) After the Ising model reaches its ground
state, the spins configuration represents the solution to the max-cut problem.
Each node with the same spin value will be placed in the same subset. Edges
connecting these two subsets are the solution to the max-cut problem.

heuristic algorithm) shown in Figure 2(b). Here, the solution
to max-cut could be interpreted by putting spins with the same
value in the same subset, e.g., white nodes (+1 spins) in one
subset and black nodes (−1 spins) in another. The total weight
of the edges connecting those two subsets is then maximized.
Many optimization problems can be converted to the max-cut
problem and then solved by Ising machines [25].

Types of Ising machines: Ising machines can be cate-
gorized into two classes: physics-based Ising machines ca-
pable of implementing and sampling an Ising model, and
computation-based Ising machines capable of implementing
heuristic and meta-heuristic methods.

Physics-based Ising machines implement a physical system
of spins and offer an interface for programming the coupling
properties of the Ising model. Physical systems governed by
such Hamiltonian (as in Equation 1) naturally move toward
low-energy states. One of the well-known Ising machines is
quantum annealers, such as D-Wave [26]. The underlying
theory is inspired by adiabatic quantum computation. How-
ever, many challenges come with quantum annealing Ising
machines. First, it requires cryogenic operating conditions,
which results in excessive power consumption (16 kW for
D-Wave’s 2000 qubit system [26]). Second, due to physical
coupling constraints, the number of nodes supported by this
device is very limited, especially for dense graphs. Finally,
reaching the ground state is not guaranteed as a result of re-
laxing adiabatic conditions in the adiabatic quantum annealing
computation. Another implementation of physical-based Ising
machines is the Bistable Resistively-coupled Ising Machine
(BRIM) [8]. In this design, each spin is represented as the
polarity of a capacitor. The coupling between each node is
represented as the conductance between each capacitor. Strong
coupling means high conductance, which enables connected
nodes to equilibrate more easily, while weak coupling means
low conductance, allowing less interaction between the two
capacitors. The sign of the coupling is supported by connecting
the capacitors’ same or the opposite polarity. BRIM shows
significant improvement in terms of performance, energy, and
area compared to previous designs. However, BRIM would
have significant performance degradation for problems beyond
its hardware capacity. Although some work has been done to
address this problem using multiple chips to create a larger
Ising machine [27], it would still require storing all the spins

on the chips.
Computation-based Ising machines implement the nodes

and coupling between them by computation such as matrix
multiplication. These Ising machines use heuristic and meta-
heuristic algorithms to achieve an approximate answer as
fast as possible. Photonic accelerators are one candidate for
implementing these heuristic algorithms. Although the com-
putational speedup provided by the photonic architectures is
still polynomial, they operate on much faster clock rates, of-
fering orders-of-magnitude speedup compared to conventional
architectures. One of the examples of such architectures is
INPRIS [4]. INPRIS is the photonic implementation of the
Photonic Recurrent Ising Sampler (PRIS) [15], which mod-
els arbitrary Ising-type Hamiltonian in Equation 1. INPRIS
employs an array of tunable Mach-Zehnder interferometers
(MZIs) to perform MVM. INPRIS is able to perform each
iteration in an order of magnitude faster than digital electronics
implementation. Compared to OPCM, MZI occupies a larger
area [12], [28]. Therefore, we chose to use OPCM in SOPHIE.

C. PRIS Algorithm

SOPHIE is based on a modified version of the PRIS
algorithm [15], which is a fast and efficient solution to the
Ising problems using MZI networks. So here we provide an
overview of the PRIS algorithm. The PRIS algorithm first
performs eigenvalue dropout, a preprocessing step to improve
the solution quality. Assume the Ising coupling matrix K is a
symmetric real-valued matrix of size N × N . Matrix K can
be eigenvalue decomposed as

K = UDU∗ (2)

where U is a unitary matrix, U∗ is its conjugate transpose, and
D is a real-valued diagonal matrix. The transformation matrix
C can be calculated using

C = USqα(D)U∗ (3)

where

Sqα(D) = 2Re(
√
D + α∆)

α ∈ [0, 1] ∆ii =
∑
j ̸=i

|Kij | (4)

C is also a symmetric real-valued matrix. The parameter α
needs to be adjusted to improve the solution quality and
performance of the algorithm.

Once we obtain the transformation matrix C after eigen-
value dropout, we can start the recurrent computations. Sup-
pose S(t) is a vector of spins at time step t with the size N
(S(t) ∈ {0, 1}N), the transformation from time step t to t+1
can be described as

X(t) ∼ N (CS(t)|ϕ),
S(t+1) = Thθ(X

(t))
(5)

where N (µ|ϕ) is a normal distribution with mean µ and
standard deviation ϕ.

Thθ(X
(t)) is a non-linear thresholding function

Thθi(Si) =

{
0, if Xi < θi,

1, otherwise.
(6)

where the threshold is

θi =
∑
j

Cij/2 (7)

When the algorithm runs recurrently for a sufficiently large
number of iterations, the system will move towards low-
energy states, which represent a good solution to the Ising
problem [15]. Although PRIS is very efficient in solving the
Ising problem, once the problem becomes larger than the
hardware’s capacity, it will suffer from the same performance
degradation as the other designs. So, we modify the PRIS
algorithm and propose a new architecture that can handle
larger Ising problems much more efficiently than previously
proposed solutions.

III. ARCHITECTURE

In this section, we first describe our modified algorithm
tailored to the OPCM arrays, which enhances the scalability
of the Ising machine. Then, we discuss SOPHIE’s system
architecture, micro-architecture, and dataflow to solve the Ising
problem.

A. Proposed Modification to the PRIS Algorithm

The essential part of PRIS is the recurrent MVM described
by Equation 5. Although photonic devices can perform MVM
very efficiently, the matrix C obtained by Equation 3 must
fit entirely into the photonic device. This is not practical
for large Ising problems, as photonic devices occupy a large
footprint. If we apply the standard tiling technique on MVM,
the communication and glue computation will become a
significant bottleneck [27]. However, suppose we can make
inter-tile communication less frequent or reduce the amount of
data communicated. In that case, we can reduce this overhead
and make the algorithm more scalable to large problem sizes.
We propose the following modifications (Algorithm 1) to the
PRIS algorithm to make it possible.

1) Symmetric Local Update: As shown in Figure 3, the
standard tiling technique on MVM decomposes the input
vector, output vector, and the matrix C into multiple tiles.
Each input vector tile will be multiplied with a matrix tile
to generate a partial sum tile, and this is called the local
computation. The partial sums (before thresholding) of the tiles
from the same columns of the matrix C will be accumulated
into an output vector tile, effectively performing the glue com-
putation and global communication. The local computations
can be significantly accelerated because each OPCM array
can compute one tile of MVM efficiently in one cycle, and
many OPCM arrays can work in parallel. However, the global
synchronization, i.e., the glue computation and the global
communication between different tiles, cannot be parallelized
in this way [27]. Therefore, they will become the bottleneck
for large MVM computations according to Amdahl’s Law.

C0 C1 C2

C3 C4 C5

C6 C7 C8

X0

X1

X2

Y0 Y1 Y2

C0

C1/C3 C4

C2/C6 C5/C7 C8

Logical Tiles Physical Tiles

Fig. 3. Symmetric local update and tile mapping. The recurrent computations
on a pair of symmetric tiles can execute locally, assuming other tiles remain
constant. A pair of symmetric tiles are transposes of each other, so they will
share the same OPCM array.

Algorithm 1: Modified PRIS Algorithm
Data: Tiles of matrix C, initial state for all spins in a batch
Result: Final state of the spins in a batch

Generate scheduling information and initialize device
for global iter do

Load the list of selected tile pairs
foreach selected pair of symmetric tiles do
// Spatial unrolling
OPCMProgramming()
BufferInit()
foreach job in the batch do

for local iter do
SymmetricLocalUpdate()

GlobalSync()

Unfortunately, the PRIS algorithm executes recurrent MVM
very frequently and performs global synchronization for every
iteration, exacerbating this overhead.

To make the PRIS algorithm scalable to large Ising prob-
lems, we need to reduce the overhead of global synchroniza-
tion. A simple intuition is to run more local computations
before performing a global synchronization. In the PRIS
algorithm, the output of MVM will become the input for the
next iteration, making it a recurrent computation. However, if
we apply the standard tiling technique to the recurrent MVM,
the local computation on each tile is no longer recurrent –
the output of one tile will affect the input of another tile
rather than itself (except for diagonal tiles), meaning that it
cannot perform the next local computation without a global
synchronization. Therefore, we need to find a closed loop
in the computation of local tiles so that they can execute
recurrent computations on themselves without needing global
synchronization.

We start by focusing on a pair of symmetric tiles and
identifying the closed loop in the computation with those
two tiles. Take the pair of C3 and C1 in Figure 3 as an
example: the computation starts from the input vector tile
X1 and the matrix tile C3, whose MVM result will affect
the output vector tile Y 0 in the first iteration of PRIS. Y 0
will become the input vector tile X0 in the next iteration,
and will be multiplied with C1 and will contribute to Y 1.
Then, in the third iteration, the updated Y 1 will become

the input vector tile X1, and the computation will repeat
as above. We can identify a closed loop in two consecutive
iterations, where only a pair of symmetric tiles (C3 and C1)
are involved, as well as their associated input and output
tiles. An exception is the diagonal tiles, whose symmetric
tiles are themselves, so the computation on themselves is
naturally a closed loop. In PRIS, the matrix tiles stay constant
throughout the computation, and the input and output vector
tiles change frequently. If we assume that some updates in
the input and output vector tiles can be skipped, the local
computation can be executed independently without needing
global synchronizations. For example, if we treat all other tiles
as constants, the computations within C3 and C1 will only
depend on, and will only affect, their local copies of X0,
X1, Y 0, and Y 1. With this assumption, we can run many
local MVMs on a pair of symmetric tiles without performing
a global synchronization. This technique significantly reduces
the global synchronization overhead and makes the algorithm
more suitable for large graphs.

We name this closed-loop computation the local iteration: a
pair of symmetric tiles (or a diagonal tile) performs recurrent
MVM independent of other tiles, assuming all other tiles
stay constant. This way, we can avoid a large portion of
global synchronization overhead. This algorithm requires some
additional buffers in the hardware, e.g., every matrix tile needs
to store the partial sum of the column, which is called the
offset vector. Besides, they need separate buffers for their
individual copy of the input vector, output vector, local partial
sum vector, and matrix tiles. These buffers are relatively small
compared to the matrix tiles, and SRAM can easily implement
them.

2) Stochastic Global Iteration: As mentioned above, every
pair of symmetric tiles assumes the local MVM results of other
tiles stay constant during local iterations. However, they still
need to exchange the updated partial sums and input vectors
(spin states) periodically with each other. Otherwise, the error
will accumulate and become unacceptable. After a specified
number of local iterations, each tile will update its local input
vector with the average of the tiles from the same column
and update its offset vector with the sum of the local MVM
results of all other tiles in the same column. We call this global
synchronization, and the local iterations on all tiles plus global
synchronization are called global iterations.

Given that the PRIS algorithm is a stochastic process, we
propose to further apply the following optimizations to reduce
both the computation and the communication requirements:

Stochastic Tile Computation: During the global iteration,
we do not execute the local iterations on all the tiles; instead,
we randomly pick only part of the tiles. We make sure to
select both tiles in a symmetric pair or the diagonal tiles
so that the chosen tiles can still perform symmetric local
updates. Only the randomly selected tiles will be mapped to
the hardware, and they will send the updated input vector and
the change of the local MVM results to other blocks. This
method significantly reduces the total amount of computation
and communication. Experiments show that we can reduce the

computation and communication operations associated with up
to 50% of the tiles while maintaining good solution quality.

Stochastic Spin Update: With the symmetric local update
technique, each tile will have a separate copy of the spin states
stored in their input/output buffers. During global synchroniza-
tion, we need to compute the average of the input vectors of all
tiles in the same column and broadcast it to the entire column
of tiles. Rather than computing the average from all copies, we
randomly pick the spin states (input vector) from one tile and
broadcast them to the entire column. This technique reduces
the communication and computation overhead for the average
computation. The stochastic spin update technique will not
significantly affect the solution quality because it approximates
averaging all spin copies if the number of global iterations is
sufficiently large. The effect of this technique can also be seen
as increasing the noise ϕ in PRIS.

Applicability to other Ising Machines: The optimizations
discussed above are tailored for OPCM devices, but they may
also apply to other Ising machines depending on their device
or hardware characteristics. Given that the optimizations we
propose involve handling part of the tiles’ computation and
communication, they are more suitable for computation-based
Ising machines than physics-based ones. Below, we briefly
discuss the applicability of our two optimizations to other Ising
machines.
1) The Symmetric Local Update technique maps a pair of
symmetric tiles into one OPCM array. This method saves
approximately half of the OPCM area and enables iterative
local computations within the pair of tiles so that global
communication is greatly reduced. This technique also applies
to software and other computation-based Ising machines to
reduce global communications in local computations. Other
Ising machines may benefit from the data locality and de-
creased communication requirements. However, in order to
reduce area (memory capacity) with this method, the de-
vice must be able to access both the stored matrix and its
transpose efficiently. For example, specially designed ReRAM
devices [29] may have the potential to benefit from this ability.
2) The Stochastic Global Iteration technique effectively re-
duces the number of tiles to compute and the amount of
global communication in each global iteration. Software and
computation-based Ising machines could potentially benefit
from the decrease in the computation and communication
requirements.

B. System Architecture

As depicted in Figure 4, SOPHIE comprises a host proces-
sor and one or more accelerators. The accelerator is designed
as a 2.5D-integrated system with different chiplets integrated
onto the interposer. These chiplets include the DRAM chiplet,
the controller chiplet, the laser sources, and multiple OPCM
chiplets that house the processing elements (PEs).

The host processor interacts with the accelerator through a
conventional electrical bus. The controller chiplet schedules
the operations of other chiplets, manages communication
between the host, DRAM chiplets, and OPCM chiplets, and

Host
Processor

Main Memory
(DRAM)

......

System
Bus

OPCM
Chiplet

Controller
Chiplet

Interposer

DRAM
Chiplet

OPCM
Chiplet

OPCM
Chiplet

OPCM
Chiplet

Laser
Source

Laser
Source

Laser
Source

Laser
Source

Fig. 4. Architecture of SOPHIE. It consists of a 2.5D integrated accelerator
that interfaces with the host processor and main memory through the system
bus. Communication between the chiplets on the interposer uses electric links.

carries out glue computations. The scheduling information is
generated offline, so the controller only needs simple state
machines to execute them. Given that we overlap commu-
nication with computation and OPCM programming, which
are the dominant operations, the controller chiplet is not on
the critical path. The DRAM chiplet contains DDR4 memory
and stores all the coupling matrix (matrix C in Section II-C)
tiles assigned to its interposer, along with their corresponding
buffer contents. The OPCM chiplets, on the other hand, store
the coupling matrix tiles in OPCM arrays, execute local
MVM computations, and relay the results to the controller
during global synchronization, as described in Section III-A.
Electrical links connect the chiplets on the interposer. In the
case of a multi-interposer system, the global synchronization
between different interposers is through the system bus.

C. Micro-architecture

Each OPCM chiplet contains multiple PEs, as shown in
Figure 5, and each PE will execute the local iterations of
a pair of symmetric tiles, as described in Section III-A1. A
PE comprises an OPCM crossbar array and associated SRAM
buffers, control logic, and programming circuitry. The OPCM
array [12] is a PIM device that can perform MVM with the
stored matrices efficiently. It features a waveguide crossbar
and phase change material (e.g., GST) next to the cross points.
Each GST cell’s transmittance encodes one element of a matrix
tile. We employ two sets of E-O and O-E converters and
Directional Couplers (DCs) to enable bi-directional operations.
For instance, in Figure 5, the left E-O converters modulate the
amplitude of multiple lasers, each directed to a row waveguide.
Specially designed DCs evenly split the input laser to all the
GST cells in the same row, effectively broadcasting the input
across an entire row. The GST cells perform multiplication by
attenuating the laser intensity. DCs then merge the attenuated
laser from the same column to the same output port, executing
an accumulation operation. The output of each column is the
vector dot product between the input vector and a column of
the matrix, and the output of all columns is the MVM result
between the input vector and the matrix.

Given the input vector S = {s1, s2, ..., sn}⊤ and the matrix
C, sending the laser from the left and reading the output from
the bottom computes the output vector as follows:

Y1 = C⊤S (8)

Alternatively, if the laser is sent from the bottom and the
result is read from the left, the output will be:

Y2 = CS (9)

This approach allows us to multiply a vector with a matrix
and its transpose without re-programming the OPCM array.
As Section III-A1 mentions, we need to perform MVM with a
pair of symmetric matrix tiles that are transposes of each other.
With the transpose ability of the PE, the two symmetric tiles
can be stored in one OPCM array, saving approximately half
of the OPCM area. Additionally, to support both positive and
negative values in the matrix, we use two arrays to represent
the positive and negative parts, respectively. The partial MVM
results of the positive and negative arrays are subtracted in the
analog electronic domain [30].

The E-O converters have only 1-bit precision because the
spins are 1-bit binary variables. The O-E converters consist
of photodetectors (PD), noise generators (NG), and dual-
precision ADCs, shown in Figure 5. The photodetector con-
verts the optical intensity into the analog electric domain, and
the noise generator adds analog noise to the analog signal.
The total amount of noise, including the inherent noise of
the signal and the noise produced by the noise generator, is
represented by the noise standard deviation ϕ in the PRIS
algorithm (Section II-C, Equation 5). Algorithm parameter ϕ is
agnostic to hardware’s noise, and we adjust the noise generator
to ensure the total noise’s standard deviation equals ϕ. During
most of the local iterations, the dual-precision ADC operates
in 1-bit mode, acting as a thresholding unit to produce the local
spin states. The threshold of the 1-bit ADC is also adjustable,
described by Equation 7. During global synchronization, we
need to update the offset vector, which is the sum of local
MVM results from other tiles, requiring multi-bit local sum
results. Therefore, the ADC operates in an 8-bit mode during
the last local iteration before the global synchronization,
spending more cycles to generate an 8-bit local sum. This
dual-precision design reduces the time and energy spent on
most of the local iterations while still supporting the global
synchronization of the proposed algorithm.

D. Mapping and Scheduling

As described in Section III-A1, we need to process a pair
of symmetric tiles of the matrix C in the same PE. The PE’s
transpose ability makes it possible to store a pair of symmetric
tiles (which have the same contents but are transposed versions
of each other) using only one OPCM array and perform MVM
with them. Therefore, we map a pair of symmetric logical
tiles onto one physical OPCM array. Although they share the
same OPCM array, they still need separate SRAM buffers
for their input/output, offset, and local partial sum vectors

SRAM

C11 C12 C13

C23C22

C33C32

C21

C31

O
-E C

onverter
(1 bit / 8 bit)

E-O
 C

onverter
(1 bit) PE PE

PE PE

OPCM Chiplet

......

CTRL

PROG

O-E Converter
(1 bit / 8 bit)

E-O Converter
(1 bit)

PE

PD

NG

ADC

PD ADC

... ...

Fig. 5. OPCM chiplet and PE architecture.

(Section III-A1). Those buffers associated with the pair of
tiles are also mapped to the same PE’s SRAM buffers. Each
PE executes the local iterations on a pair of symmetric tiles
in a time-duplexing fashion. Except for the diagonal tiles,
whose symmetric tiles are themselves, they will be individually
mapped onto a single PE. This technique reduces almost half
of the OPCM area, making the design more scalable for large
graphs.

However, the communication pattern becomes complicated
when two logical tiles at symmetric positions are mapped to
one physical OPCM array. When accessing a logical tile, we
need to keep track of the physical tile it maps to and schedule
the communication between PEs and DRAM accordingly. For
example, we need to gather/scatter data from a row of logical
tiles; however, those logical tiles may not reside in the same
row of physical tiles. Moreover, the Stochastic Global Iteration
technique randomly selects only a portion of tiles to compute,
making the communication pattern more complex. To simplify
the accelerator’s control logic, we statically generate all the
mapping and scheduling information before the computation
starts and send it to the controller chiplet. The randomness in
the stochastic global iterations (described in Section III-A2) is
also determined offline beforehand. For example, we randomly
generate a list of logical tiles to be selected in each global
iteration before initiating the computation and then send
this list to the controller. The controller only needs simple
SRAM arrays and state machines to execute the scheduling
plan generated by the host, and this execution overhead is
negligible.

E. Dataflow

Algorithm 1 provides a simplified overview of the modified
algorithm’s execution. Given a large Ising problem, SOPHIE
decomposes it into smaller tiles, schedules and executes the
tiles on the physical PEs sequentially for many iterations, and
then gathers the results. First, the host CPU will preprocess the
input graph of the Ising problem to obtain the transform matrix
C, as described in Section II-C. Based on the configurations of
tile size, hardware capacity, and the number of jobs to run in
a batch, the host generates tiling and scheduling information
and the initial states of each tile, then transfers all the data

to the DRAMs of the appropriate accelerators. The controller
then loads the first set of blocks scheduled to run and transfers
them to the SRAM of the designated OPCM chiplets. Then,
the coupling matrix tiles are programmed onto the OPCM
arrays. Each tile’s associated buffer content (described in
Section III-A1) is also transferred to the SRAM of the OPCM
chiplet. The programming and communication can overlap to
enhance performance.

Following OPCM programming and buffer initialization, the
PEs in the OPCM chiplet initiate the local iterations for the
first job in the batch. Data are read from SRAM buffers,
converted to optical domains, and sent to the OPCM array.
Each optical output of an MVM operation is converted to
electric analog signals. The signals will be applied to analog
noise, converted to 1-bit digital, and finally stored back in the
SRAM buffer as the input to the next iteration. The recurrent
local computations will repeat for a specified number of local
iterations for every job in the batch. Except for the last local
iteration of each job, the ADC will operate in 8-bit mode to
obtain the local MVM result of the current tile. The chiplet
then performs global synchronization by sending the buffer
contents back to the controller and receiving them for the
next scheduled tile. This process repeats for a series of local
iterations for other sets of tiles. The controller can overlap the
global synchronization with the OPCM re-programming and
the local iterations of the next set of tiles. Once the required
number of global iterations is reached, the controller sends the
result from DRAM back to the host’s main memory.

IV. EVALUATION

In this section, we first evaluate our modified algorithm’s
solution quality and performance, and then discuss the per-
formance, power, and area of SOPHIE. Finally, we compare
SOPHIE’s performance with other works.

A. Evaluation Methodology

We develop a functional simulator in Python to test the
solution quality of our algorithm, find the optimal parameter
setting, and obtain the number of iterations required for a
solution. The functional simulator also counts the total number
of each type of operation, and these numbers serve as the input
for power and performance estimation.

We build in-house tools to compute the power, performance,
and area of SOPHIE. At a high level, SOPHIE is assumed to
comprise one or more accelerators. Each accelerator houses an
interposer embedded with electrical links [31]. The interposer
hosts a controller chiplet, a DRAM chiplet, a laser source
chiplet, and 4 OPCM chiplets. Each OPCM chiplet, occupying
an area of 486 mm2, contains 64 PEs. The size and number of
OPCM arrays are chosen to maximize the energy, delay, and
area product (EDAP), which will be discussed in Section IV-C.
Each PE incorporates 64 × 128 OPCM cells (positive and
negative parts) to store a 64 × 64 matrix tile. The area of
the OPCM array is calculated assuming each OPCM cell is
30× 30 µm2 [12], with MRRs having a diameter of 20 µm.

We assume the accelerator operates at 5 GHz. Photonic
circuits can operate at extremely high frequencies. The existing
implementation of OPCM is demonstrated at 18 GHz [12],
delivering extremely high MVM performance. However, de-
signing efficient and reliable peripheral electronic circuits to
operate at such high frequencies is not feasible. Therefore, we
set the accelerator to run at 5 GHz, a frequency at which we
can design electronic circuits in GF22FDX CMOS technol-
ogy [32]. The power consumption of the accelerator includes
laser power and electric power. The laser power is determined
by the optical loss of the photonic circuits. We compute the
optical loss of the OPCM array [12] assuming the losses of the
GST cell, waveguide crossing, and DC are 0.6 dB, 0.0028 dB,
and 0.01 dB, respectively [12], and the combined quantum
efficiency of the laser and photodetector is 10%. Laser power
is calculated backward based on the loss of the photonic
circuits and the energy required at the photodetector. Under
the configuration selected in Section IV-C, the laser source
consumes 469 mW per wavelength. The electric programming
energy of each GST cell is assumed to be the average
of amorphizing and crystallizing (5.55 nJ and 860.71 nJ,
respectively [19]), and it takes 400 ns to program the entire
array [19]. The E-O conversion costs 1 pJ/bit [12], and the O-
E conversion at 5 GS/s consumes 29 mW [33]. We synthesize
the CMOS arithmetic units for glue computation individually
with GF22FDX technology node using Cadence tools to get
the area and energy consumption of each unit, which is then
used to get the energy consumption of each operation. We
utilize the memory compiler to generate an SRAM array for
the specified technology node. We assume that the SRAM
operates at 1 GHz, and the SRAM accesses are interleaved
across multiple SRAM arrays to keep pace with the 5 GHz
accelerator frequency. With the optimal configuration chosen
in Section IV-C, the SRAM total capacity is 7.6 MB, occupy-
ing an area of 11.5 mm2 and consuming 540 mW power. The
control logic is simple because it only needs to execute the pre-
generated scheduling information. We synthesize the control
logic using TSMC40 technology node and scale the power
and area numbers to 22 nm node. Specifically, the control
logic consumes 26 mW power and occupies 11, 536 µm2 area.
DRAM accesses are assumed to be 20 pJ/bit [34]. We assume
the DRAM latency to be 40 ns if within the same interposer, or
80 ns for cross-interposer access [35]. The system comprises
a 16-lane CXL bus, providing a total bandwidth of 64 GB/s.
The above numbers are used in combination with the hardware
configuration and operation counts to compute the system’s
PPA.

Table I presents a summary of the graphs used as bench-
marks for our system. As mentioned in Section II-B, we
can map a real-world combinatorial problem into the max-
cut problem of a graph, and solve it with Ising machines.
We evaluate our system by solving the max-cut problem of
graphs from GSET and K-graphs [16]. GSET and K-graphs
have been chosen as benchmarks because they are utilized in
prior Ising machine algorithms and implementations. These
graphs are extensively examined in algorithmic literature, and

TABLE I
BENCHMARK GRAPHS

Graph # Nodes Description
G1 800 From GSET datasetG22 2000

K100 100
Randomly generated complete graphsK16384 16384

K32768 32768

they either have straightforward ground truth solutions or have
well-recognized best-known solutions [5]. As a result, they are
frequently employed in prior Ising machine implementations,
and we select them to facilitate an equitable comparison with
other works. GSET comprises graphs generated by the Rudy
graph generator [16]. Specifically, we choose G1 and G22
to facilitate a fair comparison with other Ising machines that
also evaluated these graphs. K-graphs are complete graphs
with random edge weights. We generate both small K-graphs
(K100) and large K-graphs (K16384 and K32768) using
Rudy [16] to evaluate the scalability and performance of
SOPHIE.

B. Evaluation of the Modified Algorithm

1) Effect of Algorithm Parameters: The two parameters in
the original PRIS algorithm, namely the noise standard devia-
tion ϕ and the eigenvalue dropout factor α, have a significant
impact on the solution quality and the number of iterations
required to converge to a solution. Our improved algorithm
effectively adds more noise to PRIS due to the stochastic
global iterations. Here, we will discuss the effects of these two
parameters and how they affect hardware implementation.

Figure 6 shows the solution quality of our modified al-
gorithm on G1 and G22 with various ϕ and α, under the
settings of tile size 64, 10 local iterations per global iteration,
running 500 global iterations, picking all tiles during the global
iteration, and stochastic spin update applied. Each data point
is an average of 10 runs.

Effect of algorithm parameters: The behavior of ϕ and
α in the modified algorithm closely resembles that in the
original PRIS algorithm. Together, these two parameters affect
the solution quality for a given graph. However, there’s a slight
difference: The optimal noise ϕ for the modified algorithm
is smaller than that for the original algorithm. This is be-
cause our modified algorithm involves a stochastic process,
which effectively introduces more noise to the computation.
The eigenvalue-dropout factor α has similar effects in both
versions, with the optimal setting around zero for G1 and
G22. It is used as a design knob to fine-tune the algorithm
and improve the solution quality [15]. Note that the optimal
settings depend on the graph order and graph density [4], so
the optimal α might not be zero for other graphs.

Optimal setting for modified algorithm: For the modified
algorithm, both graphs achieve the best solution quality at α =
0. The optimal setting that leads to the best solution quality
is ϕ = 0.2, α = 0 for G1, and ϕ = 0.1, α = 0 for G22. With
the optimal setting, the highest average cut values are within
5% of the best-known results from previous works [5]. The

0.1 0.4 0.7 1.0

-0
.3

0.
0

0.
3

0.
6

0.
9

G1

8000

9000

10000

11000

0.1 0.4 0.7 1.0

-0
.3

0.
0

0.
3

0.
6

0.
9

G22

8000

9000

10000

11000

12000

Fig. 6. Solution quality (cut value) of the modified algorithm with various α
and ϕ settings for G1 and G22.

optimal settings of ϕ and α depend on both the graph order
and graph density [4]. Therefore, we can generate a lookup
table of ϕ and α for common (graph order, graph density)
pairs before any computations.

Hardware implementation effects: As mentioned in Sec-
tion III-C, parameter ϕ in the modified algorithm denotes the
total amount of noise, including the noise from OPCM itself
and the noise added from noise generators. We adjust the
noise generator so that the total amount of noise meets the
optimal settings, making the ϕ parameter agnostic to hardware
implementations. However, if this algorithm is applied to other
devices with significant noise, the optimal ϕ setting might not
be achieved even if we don’t use the noise generator. In this
case, the system’s solution quality might be affected.

2) Effect of Stochastic Tile Computation: As mentioned in
Section III-A2, we apply the stochastic tile computation by
randomly picking only part of the tiles in each global iteration.
This technique reduces overall computation and communica-
tion demand but could also hinder the quality of the solution.
Figure 7 shows the relation between the solution quality of
G22 with various settings of the number of local iterations
per global iteration and the percentage of tiles selected in each
global iteration. Every experiment runs for a total of 5000 local
iterations, and all other parameters are the optimal settings
obtained from the above discussions. Each data point is the
average of 10 runs. Increasing the number of local iterations
per global iteration, and the percentage of the selected tiles,
both positively affect the solution quality. However, the impact
on solution quality is small – the worst setting is still within
10% of the known best solution. This is because a total of
5000 local iterations are so large for this graph size that
even the most aggressive setting will converge. We observed
similar behavior in other graphs as well. The results indicate
that we can perform 10 local iterations per global iteration
and select only about 50% − 75% of the tiles to compute
during the global iterations while having a negligible impact
on the solution quality. This optimal setting means that the
stochastic global iteration technique can reduce up to 50% of
the total computation (and the associated communication) with
an acceptable impact on the solution quality.

While the stochastic global iteration technique significantly
reduces the overall computation and global synchronization
overhead, the system might spend more iterations to converge
to a solution. Figure 8 shows the total number of (local)

6 12 23 43 74 100
% of selected tiles

1
10

25
50

10
0

Lo
ca

l i
te

ra
tio

ns
pe

r g
lo

ba
l i

te
ra

tio
n

Cut value

12000

12200

12400

12600

12800

Fig. 7. Impact of stochastic tile computation on the solution quality for G22.
Applying more local iterations per global iteration decreases the solution
quality. Selecting fewer tiles to compute in every global iteration also
deteriorates the solution quality. However, the impact is relatively small.

6 12 23 43 74 100
% of selected tiles

1
10

25
50

10
0

Lo
ca

l i
te

ra
tio

ns
 p

er
gl

ob
al

 it
er

at
io

n

Total number of iterations

1000

2000

3000

4000

Fig. 8. Total number of iterations required to reach 95% of the known-
best solution for G22. Blank cells indicate they fail to converge to the
target solution quality within 5000 iterations. As we aggressively apply the
symmetric local update and stochastic tile computation techniques (toward the
upper-left corner) to reduce the computation and synchronization overhead,
we need more number of iterations.

iterations required to reach 95% of best-known solution with
various percentages of tiles selected in each global iteration for
G22. All other parameters are the optimal settings obtained in
the previous discussion. Each data point is the average of 100
runs. The blank cells in the grid indicate they failed to reach
the target solution quality within a total of 5000 iterations. As
shown in the figure, picking fewer tiles to compute in each
global iteration makes the algorithm spend more iterations to
converge. Skipping more global synchronization (i.e., running
more local iterations per global iteration) also leads to an
increased total number of iterations. However, the number of
iterations does not necessarily indicate the run time because
local iterations are much faster than global synchronizations.
Therefore, we need timing analysis to decide the optimal
settings.

C. Power, Performance, and Area Results

The tile size and batch size settings affect the power,
performance, and area of SOPHIE. Given the total number
of OPCM cells, changing the size of each tile (OPCM array)
affects the required laser power and also the total area of the
photonic devices. Increasing the number of jobs per batch will
amortize the global synchronization and OPCM programming
cost but will require more SRAM buffers. Figure 9 shows the
EDAP per job for running a graph of order 32768 for 500
global iterations, 10 local iteration per global iteration, and
with one accelerator in the system. From the figure, a tile size

1 10 25 50 75 100
Batch size

16
32

64
12

8
25

6
Ti

le
 si

ze

EDAP (J s mm2)

103

105

107

109

Fig. 9. Energy, delay, and area product (EDAP) of one accelerator running
K32768. Batch size of 100 and tile size of 64 yields the best EDAP.

6 12 23 43 74 100
% of selected tiles

1
10

25
50

10
0

Lo
ca

l i
te

ra
tio

ns
 p

er
gl

ob
al

 it
er

at
io

n

Time per job (s)

0.4

0.6

0.8

1.0

1.2

1.4

1e 5

Fig. 10. Run time per job to reach the solution for G22. (Within 5% of best-
known solution). Blank cells indicate they fail to reach the target solution
quality within 5000 iterations.

of 64 and batch size of 100 achieves the lowest EDAP number,
and we will use this setting for the remaining analyses.

We evaluate the performance of SOPHIE using G22. Fig-
ure 10 shows the run time per job to reach 95% of the
known best solution, with various settings of local iterations
per global iteration and the percentage of tiles selected in each
global iteration. To reduce simulation time, we use G22 (2000
nodes) as the benchmark. We focus on the scalability for large
graphs that do not fit in the hardware, so in this experiment,
we limit the total OPCM capacity to 512 × 512 coupling
coefficients, such that programming overhead is accounted
for. The figure shows that as the number of local iterations
per global iteration increases, the run time first decreases and
then increases. This is because the modified algorithm reduces
global synchronization overhead and the overall computation
per global iteration; however, it might need more global
iterations to converge to a solution. Therefore, there’s a trade-
off between the time/energy cost per global iteration and the
number of global iterations required. According to Figure 10
and Figure 7, 10 local iterations per global iteration and
selecting 74% of the tiles during the global iteration yields
the best performance and acceptable solution quality.

D. Comparison with Other Works

Small Graph: We first compare the performance of SO-
PHIE against previous works using small graphs K100, G1,
and G22, which can fit entirely into the hardware, shown
in Table II. We benchmark our work against INPRIS [4],
PRIS [15], CIM [9], BRIM [8], BLS [5], and D-Wave [36].
Previous papers have reported the results of other architectures.

We simulate our system with the settings in Section IV-A and
using 4 accelerators. Given that the graphs can fit into the
accelerator entirely, we need to program the OPCM array just
once, and this programming cost is included in the simulation.
The run time is amortized for each job in a batch.

From Table II, we can see that our design is at least
3× faster than INPRIS, 161× faster than PRIS, and is
7419×−25000× faster than CIM. It is also 1.25× faster than
BRIM, and is orders of magnitude faster than the CPU and the
D-Wave quantum annealer. This is mainly because the OPCMs
can compute MVM at very high speed, and the modified
algorithm reduces the global synchronization overhead. Please
note these results are using 4 SOPHIE accelerators so that
the largest graph G22 can fit in the hardware. The SOPHIE
results include the amortized initial programming time, while
results from other works do not include the initial program-
ming/setup time. The solution quality of SOPHIE under this
configuration is slightly lower than other works (error < 5%
vs. < 1%), which is due to the proposed modification to the
PRIS algorithm. This is due to the trade-off between solution
quality and speed, as discussed in Section IV-B and IV-C.

Large Graph: We then evaluate our design with K16384
and K32768 graphs, which can not fit entirely into OPCM
arrays. Shown in Table III, we compare run time of our
design with SB [37] and mBRIM3D [27] (concurrent mode).
Both mBRIM3D and SB require the hardware capacity to be
larger than the problem size and use multiple accelerators
or chips to increase the total hardware capacity. Although
it works for K16384, it might be difficult to solve problems
with much larger sizes. The overall hardware capacity of such
designs is constrained not just by the physical area but also
by integration and communication technologies, such as 3D
integration and through-silicon vias. Consequently, accommo-
dating an extremely large graph within the hardware will pose
a significant challenge. For OPCM-based Ising machines, it is
even harder to support large graphs because the footprint of
photonic devices is much larger than that of electronic devices.
Therefore, our system is designed to work on the decomposed
subproblems sequentially in a time-duplexing manner without
fitting the entire problem into hardware at once. Fortunately,
the overhead caused by the time-duplexing is minimized
through the architecture and algorithm optimizations.

As shown in Table III, for K16384, our design with only
one accelerator is 32× faster than SB with 8 FPGAs. However,
our single accelerator design is 35× slower than mBRIM3D
with 4 chips. This is mainly because of the overhead in global
synchronization and re-programming of the OPCM arrays. By
incorporating more accelerators into our design, we can reduce
the overall run time. With 4 accelerators, our design is 125×
faster than the 8-FPGA SB implementation but is still 8.8×
slower than mBRIM3D. We can further improve the perfor-
mance of the system by adding more accelerators. For K32768,
both SB and mBRIM3D need more instances to accommodate
the problem. However, SOPHIE can support such a large
graph without adding more accelerators. For SOPHIE, the
run time for K32768 is about 3× of the runtime for K16384

TABLE II
PERFORMANCE (SOLUTION QUALITY) FOR SMALL GRAPHS

Architecture Type K100 G1 G22
SOPHIE Photonic 0.31 µs (T90%) 0.096 µs (4.1%a) 0.2 µs (3.9%a)

INPRIS [4] Photonic 1− 10 µs (T90%) - -
PRIS [15] FPGA 50 µs−1 ms (T90%) - -
CIM [9] Photonic 2.3 ms (T90%) - 5 ms (0.8%b)

BRIM [8] Electric - - 0.25 µs (0.3%b)
BLS [5] CPU - 13 s (0.1%a) 560 s (0.1%a)

D-Wave [36] Quantum 5× 1018 s (T90%) - -
T90%: 90% probability to reach ground state.
a Average error relative to the best-known solution.
b Best-case error relative to the best-known solution.

TABLE III
PERFORMANCE COMPARISON FOR LARGE GRAPHS

Architecture Type # accelerators K16384 K32768

SOPHIE Photonic
1 38.25 µs 129.0 µs
2 20.40 µs 68.80 µs
4 9.69 µs 32.34 µs

SB [37] FPGA 8 1.21 ms -
mBRIM3D [27] Electric 4 1.1 µs -

without the need for additional accelerators. The performance
improvement of SOPHIE by using more accelerators may
appear super linear, but this is not accurate. The issue arises
because the total number of tiles to compute is not evenly
divisible by the total number of PEs available. Consequently,
the hardware remains underutilized. This mismatch leads to
slight variations in hardware utilization rates across different
configurations, resulting in slightly anomalous data points.

V. RELATED WORK

In SOPHIE, we tackle the scalability challenges of Ising
machines by employing symmetric local updates and stochas-
tic global iterations. These methods lead to decreased com-
putational and communication requirements, enabling efficient
handling of larger-scale problems. There have been many prior
works addressing the scalability of the Ising machines.

One solution would be to divide the main problem into many
sub-problems and solve them. D-Wave tool [38] proposes an
algorithm that can be applied to any Ising machine to solve
problems larger than the hardware capacity. Their proposed
algorithm is a divide-and-conquer solution for larger problems.
However, due to the dependency of the sub-problems on each
other, one of the main drawbacks of this solution is the
number of reprogramming required for the Ising machine. For
many Ising machines, the time required for reprogramming
can be much larger compared to the computation time, so the
reprogramming would become a significant bottleneck. As an
example, D-wave takes 11.7 ms to program and only 240 µs
to perform the rest of the steps [39].

Sharma et al. [27] designed a multi-chip architecture that
can increase the capacity of a physics-based Ising machine.
Their design employs multiple chips of the BRIM Ising ma-
chine that communicate together in order to increase the total
capacity of the physical Ising machine. They offer multiple
operation modes that can accelerate solving the Ising problem.
Their experimental design consists of 4 BRIM chips, each with
a capacity of 8192 nodes, resulting in an Ising machine with

a total capacity of 16384 nodes. Their design presents a rapid
and energy-efficient approach to addressing Ising problems.
However, a notable limitation of their design is the necessity
to store all spin configurations on chips to solve the Ising
problem. For instance, in the case of the K32768 graph,
assuming each chip can hold 8192 nodes [27], it would require
16 chips to tackle the problem adequately.

Simulated bifurcation (SB) [40] is another heuristic al-
gorithm derived from a quantum bifurcation machine. SB
supports all-to-all coupled spins and offers parallelism, which
can be exploited using parallel processors. Tatsumura et
al. [37] propose a multi-chip architecture using FPGAs that
can perform SB in parallel to solve large problems. Compared
to SOPHIE, the 8-FPGA implementation of SB is 47× slower
than the 4-accelerator version of this work.

Our proposed architecture, referred to as SOPHIE, effec-
tively addresses the scalability challenges encountered in Ising
machines, surpassing previous approaches. SOPHIE alleviates
the global synchronization cost in divide-and-conquer solu-
tions through the implementation of symmetric local updates,
which isolate pairs of tiles and reduce global communication.
Additionally, we confront the glue computation and commu-
nication bottlenecks associated with global synchronization by
employing stochastic global iteration, reducing the computa-
tion and communication requirement. Our design incorporates
OPCM tiles to enhance computational throughput, further
improving the performance.

VI. CONCLUSION

Ising machines stand out as promising non-von Neumann
architectures that are tailored for solving combinatorial op-
timization problems. Previous implementations of Ising ma-
chines required the hardware capacity to be larger than
the problem size; otherwise, their performance would have
degraded significantly. We propose SOPHIE, which uses
OPCM as a computation-based Ising machine. While de-
signing SOPHIE, we perform algorithm-level, device-level,
and architecture-level optimizations. Specifically, our modified
algorithm incorporates a symmetric local update technique
and a stochastic global synchronization strategy, which reduce
the overall computation demand and global synchronization
overhead. We apply device-level optimizations to support the
modified algorithm, including employing bi-directional OPCM
arrays and dual-precision ADCs. Our symmetric tile mapping
method at the architecture level reduces approximately half of
the OPCM array area, enhancing the scalability of the system.

SOPHIE reduces approximately half of the OPCM area
and reduces 25% − 50% of the computation demand and
global synchronization overhead while maintaining acceptable
solution quality. SOPHIE achieves 3× speedup against state-
of-the-art photonic Ising machines on small graphs and 125×
speedup against FPGA-based designs on large problems. With
the above techniques, SOPHIE alleviates the hardware ca-
pacity constraints of Ising machines, offering a scalable and
efficient alternative for addressing Ising problems.

REFERENCES

[1] S. Kanamaru, D. Oku, M. Tawada, S. Tanaka, M. Hayashi, M. Yamaoka,
M. Yanagisawa, and N. Togawa, “Efficient Ising Model Mapping to
Solving Slot Placement Problem,” in 2019 IEEE International Confer-
ence on Consumer Electronics (ICCE). Las Vegas, NV, USA: IEEE,
Jan. 2019, pp. 1–6.

[2] C. Johnson, D. H. Allen, J. Brown, S. Vanderwiel, R. Hoover,
H. Achilles, C.-Y. Cher, G. A. May, H. Franke, J. Xenedis, and C. Basso,
“A wire-speed powertm processor: 2.3GHz 45nm SOI with 16 cores and
64 threads,” in 2010 IEEE International Solid-State Circuits Conference
- (ISSCC). San Francisco, CA, USA: IEEE, Feb. 2010, pp. 104–105.

[3] D. P. Landau and K. Binder, A guide to Monte Carlo simulations in
statistical physics, 4th ed. Cambridge: Cambridge University Press,
2015.

[4] M. Prabhu, C. Roques-Carmes, Y. Shen, N. Harris, L. Jing, J. Car-
olan, R. Hamerly, T. Baehr-Jones, M. Hochberg, V. Čeperić, J. D.
Joannopoulos, D. R. Englund, and M. Soljačić, “Accelerating recurrent
Ising machines in photonic integrated circuits,” Optica, vol. 7, no. 5, pp.
551–558, May 2020.

[5] U. Benlic and J.-K. Hao, “Breakout Local Search for the Max-Cut
Problem,” Engineering Applications of Artificial Intelligence, vol. 26,
no. 3, pp. 1162–1173, Mar. 2013.

[6] M. W. Johnson, M. H. S. Amin, S. Gildert, T. Lanting, F. Hamze,
N. Dickson, R. Harris, A. J. Berkley, J. Johansson, P. Bunyk, E. M.
Chapple, C. Enderud, J. P. Hilton, K. Karimi, E. Ladizinsky, N. Ladizin-
sky, T. Oh, I. Perminov, C. Rich, M. C. Thom, E. Tolkacheva, C. J. S.
Truncik, S. Uchaikin, J. Wang, B. Wilson, and G. Rose, “Quantum
annealing with manufactured spins,” Nature, vol. 473, no. 7346, pp.
194–198, 2011.

[7] T. Wang and J. Roychowdhury, “OIM: Oscillator-Based Ising Machines
for Solving Combinatorial Optimisation Problems,” in Unconventional
Computation and Natural Computation, I. McQuillan and S. Seki, Eds.
Cham: Springer International Publishing, 2019, vol. 11493, pp. 232–256,
series Title: Lecture Notes in Computer Science.

[8] R. Afoakwa, Y. Zhang, U. K. R. Vengalam, Z. Ignjatovic, and M. Huang,
“BRIM: Bistable Resistively-Coupled Ising Machine,” in 2021 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA). Seoul, Korea (South): IEEE, Feb. 2021, pp. 749–760.

[9] T. Inagaki, Y. Haribara, K. Igarashi, T. Sonobe, S. Tamate, T. Honjo,
A. Marandi, P. L. McMahon, T. Umeki, K. Enbutsu, O. Tadanaga,
H. Takenouchi, K. Aihara, K.-i. Kawarabayashi, K. Inoue, S. Ut-
sunomiya, and H. Takesue, “A coherent Ising machine for 2000-node
optimization problems,” Science, vol. 354, no. 6312, pp. 603–606, Nov.
2016.

[10] K. Tatsumura, A. R. Dixon, and H. Goto, “FPGA-Based Simulated
Bifurcation Machine,” in 2019 29th International Conference on Field
Programmable Logic and Applications (FPL), 2019, pp. 59–66.

[11] G. Yang, C. Demirkiran, Z. E. Kizilates, C. A. R. Ocampo,
A. K. Coskun, and A. Joshi, “Processing-in-Memory Using Optically-
Addressed Phase Change Memory,” in 2023 IEEE/ACM International
Symposium on Low Power Electronics and Design (ISLPED), Aug. 2023,
pp. 1–6.

[12] J. Feldmann, N. Youngblood, M. Karpov, H. Gehring, X. Li, M. Stap-
pers, M. Le Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu,
C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. Pernice, and
H. Bhaskaran, “Parallel convolutional processing using an integrated
photonic tensor core,” Nature, vol. 589, no. 7840, pp. 52–58, Jan. 2021.

[13] M. Wei, K. Xu, B. Tang, J. Li, Y. Yun, P. Zhang, Y. Wu, K. Bao, K. Lei,
Z. Chen, H. Ma, C. Sun, R. Liu, M. Li, L. Li, and H. Lin, “Monolithic
back-end-of-line integration of phase change materials into foundry-
manufactured silicon photonics,” Nature Communications, vol. 15, no. 1,
p. 2786, Mar. 2024.

[14] C. Lian, C. Vagionas, T. Alexoudi, N. Pleros, N. Youngblood, and
C. Rı́os, “Photonic (computational) memories: Tunable nanophotonics
for data storage and computing,” Nanophotonics, vol. 11, no. 17, pp.
3823–3854, Sep. 2022.

[15] C. Roques-Carmes, Y. Shen, C. Zanoci, M. Prabhu, F. Atieh, L. Jing,
T. Dubček, C. Mao, M. R. Johnson, V. Čeperić, J. D. Joannopoulos,
D. Englund, and M. Soljačić, “Heuristic recurrent algorithms for pho-
tonic Ising machines,” Nature Communications, vol. 11, no. 1, p. 249,
Jan. 2020.

[16] Giovanni Rinaldi, “Rudy graph generator,”
https://web.stanford.edu/˜yyye/yyye/Gset/, 1998.

[17] C. Rı́os, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright,
H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile
multi-level memory,” Nature Photonics, vol. 9, no. 11, pp. 725–732,
Nov. 2015.

[18] J. R. Erickson, N. A. Nobile, D. Vaz, G. Vinod, C. A. R. Ocampo,
Y. Zhang, J. Hu, S. A. Vitale, F. Xiong, and N. Youngblood, “Comparing
the thermal performance and endurance of resistive and pin silicon
microheaters for phase-change photonic applications,” Optical Materials
Express, vol. 13, no. 6, pp. 1677–1688, 2023.

[19] Z. Fang, R. Chen, J. Zheng, A. I. Khan, K. M. Neilson, S. J. Geiger,
D. M. Callahan, M. G. Moebius, A. Saxena, M. E. Chen, C. Rios,
J. Hu, E. Pop, and A. Majumdar, “Ultra-low-energy programmable non-
volatile silicon photonics based on phase-change materials with graphene
heaters,” Nature Nanotechnology, vol. 17, no. 8, pp. 842–848, Aug.
2022.

[20] W. Ma, S. Tan, K. Wang, W. Guo, Y. Liu, L. Liao, L. Zhou, J. Zhou,
X. Li, L. Liang, and W. Li, “Practical two-dimensional beam steering
system using an integrated tunable laser and an optical phased array,”
Applied Optics, vol. 59, no. 32, p. 9985, Nov. 2020.

[21] C. Wu, H. Yu, S. Lee, R. Peng, I. Takeuchi, and M. Li, “Programmable
phase-change metasurfaces on waveguides for multimode photonic con-
volutional neural network,” Nature Communications, vol. 12, no. 1,
p. 96, Jan. 2021.

[22] C. Rı́os, N. Youngblood, Z. Cheng, M. Le Gallo, W. H. P. Pernice, C. D.
Wright, A. Sebastian, and H. Bhaskaran, “In-memory computing on a
photonic platform,” Science Advances, vol. 5, no. 2, p. eaau5759, Feb.
2019.

[23] A. Lucas, “Ising formulations of many NP problems,” Frontiers in
Physics, vol. 2, 2014.

[24] M. Gendreau and J.-Y. Potvin, Handbook of metaheuristics. Springer
US, 2009.

[25] N. Mohseni, P. L. McMahon, and T. Byrnes, “Ising machines as hard-
ware solvers of combinatorial optimization problems,” Nature Reviews
Physics, vol. 4, no. 6, pp. 363–379, May 2022.

[26] D.-W. Systems, “White paper: Computational power consumption and
speedup,” D-Wave Systems, The Quantum Computing Company, Palo
Alto, Canada, Tech. Rep. 14-1005A-D, December 2017.

[27] A. Sharma, R. Afoakwa, Z. Ignjatovic, and M. Huang, “Increasing ising
machine capacity with multi-chip architectures,” in Proceedings of the
49th Annual International Symposium on Computer Architecture. New
York New York: ACM, Jun. 2022, pp. 508–521.

[28] Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones,
M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and
M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Na-
ture Photonics, vol. 11, no. 7, pp. 441–446, Jul. 2017.

[29] N. Talati, S. Gupta, P. Mane, and S. Kvatinsky, “Logic Design Within
Memristive Memories Using Memristor-Aided loGIC (MAGIC),” IEEE
Transactions on Nanotechnology, vol. 15, no. 4, pp. 635–650, Jul. 2016.

[30] F. Brückerhoff-Plückelmann, J. Feldmann, H. Gehring, W. Zhou, C. D.
Wright, H. Bhaskaran, and W. Pernice, “Broadband photonic tensor core
with integrated ultra-low crosstalk wavelength multiplexers,” Nanopho-
tonics, vol. 11, no. 17, pp. 4063–4072, Sep. 2022.

[31] N. C. Harris, D. Bunandar, A. Joshi, A. Basumallik, and R. Turner,
“Passage: A Wafer-Scale Programmable Photonic Communication Sub-
strate,” in 2022 IEEE Hot Chips 34 Symposium (HCS). Cupertino, CA,
USA: IEEE, Aug. 2022, pp. 1–26.

[32] C. Auth, C. Allen, A. Blattner, D. Bergstrom, M. Brazier, M. Bost,
M. Buehler, V. Chikarmane, T. Ghani, T. Glassman, R. Grover, W. Han,
D. Hanken, M. Hattendorf, P. Hentges, R. Heussner, J. Hicks, D. Ingerly,
P. Jain, S. Jaloviar, R. James, D. Jones, J. Jopling, S. Joshi, C. Kenyon,
H. Liu, R. McFadden, B. McIntyre, J. Neirynck, C. Parker, L. Pipes,
I. Post, S. Pradhan, M. Prince, S. Ramey, T. Reynolds, J. Roesler,
J. Sandford, J. Seiple, P. Smith, C. Thomas, D. Towner, T. Troeger,
C. Weber, P. Yashar, K. Zawadzki, and K. Mistry, “A 22nm high per-
formance and low-power CMOS technology featuring fully-depleted tri-
gate transistors, self-aligned contacts and high density MIM capacitors,”
in 2012 Symposium on VLSI Technology (VLSIT), 2022, pp. 131–132.

[33] M. Guo, J. Mao, S.-W. Sin, H. Wei, and R. P. Martins, “A 5 GS/s
29 mW Interleaved SAR ADC With 48.5 dB SNDR Using Digital-
Mixing Background Timing-Skew Calibration for Direct Sampling Ap-
plications,” IEEE Access, vol. 8, pp. 138 944–138 954, 2020.

[34] M. Horowitz, “1.1 Computing’s energy problem (and what we can do
about it),” Digest of Technical Papers - IEEE International Solid-State
Circuits Conference, vol. 57, pp. 10–14, 2014.

[35] A. Cho, A. Saxena, M. Qureshi, and A. Daglis, “A Case for CXL-Centric
Server Processors,” May 2023.

[36] R. Hamerly, T. Inagaki, P. L. McMahon, D. Venturelli, A. Marandi,
T. Onodera, E. Ng, C. Langrock, K. Inaba, T. Honjo, K. Enbutsu,
T. Umeki, R. Kasahara, S. Utsunomiya, S. Kako, K.-i. Kawarabayashi,
R. L. Byer, M. M. Fejer, H. Mabuchi, D. Englund, E. Rieffel, H. Take-
sue, and Y. Yamamoto, “Experimental investigation of performance
differences between coherent Ising machines and a quantum annealer,”
Science Advances, vol. 5, no. 5, p. eaau0823, May 2019.

[37] K. Tatsumura, M. Yamasaki, and H. Goto, “Scaling out Ising machines
using a multi-chip architecture for simulated bifurcation,” Nature Elec-
tronics, vol. 4, no. 3, pp. 208–217, Mar. 2021.

[38] M. Booth, S. P. Reinhardt, and A. Roy, “Partitioning Optimization
Problems for Hybrid Classical/Quantum Execution,” D-Wave, Tech.
Rep., Oct. 2017.

[39] D.-W. Systems, “Operation and Timing ; D-Wave System Doc-
umentation documentation,” https://docs.dwavesys.com/docs/latest/c
qpu timing.html.

[40] H. Goto, K. Endo, M. Suzuki, Y. Sakai, T. Kanao, Y. Hamakawa,
R. Hidaka, M. Yamasaki, and K. Tatsumura, “High-performance combi-
natorial optimization based on classical mechanics,” Science Advances,
vol. 7, no. 6, p. eabe7953, Feb. 2021.

