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Abstract—The escalating carbon emissions driven by the
growing computational demands of Artificial Intelligence (AI)
have made energy-efficient and sustainable hardware design a
high priority. Photonic computing has emerged as a promising
solution, delivering orders of magnitude higher throughput and
energy efficiency than CMOS for deep neural network infer-
ences, thereby lowering operational carbon. However, studies
have shown that the carbon emission from manufacturing, i.e.,
embodied carbon, constitutes a substantial and often dominant
portion of the total carbon footprint of a computing system.
Hence, it is crucial to consider both operational and embodied
carbon to determine the true benefits of photonic computing.
While the embodied carbon of CMOS chips and CMOS-based
systems has been studied extensively, there is currently no model
available for estimating the embodied carbon of photonic chips.

In this work, we develop the first-ever model to estimate the
embodied carbon of photonic chips. Our findings show that
photonic chips can reduce the embodied carbon of computing
systems with at least 4.1× less fabrication energy and signif-
icantly higher yield than CMOS. Building on our model, we
introduce EPiCarbon, an open-source tool to evaluate the carbon
footprint of Electro-Photonic (EPiC) accelerators, incorporating
both operational and embodied carbon. Using EPiCarbon, we
analyze the carbon footprint of state-of-the-art EPiC accelerators,
demonstrating their potential as carbon-sustainable solutions for
computationally demanding AI applications. Finally, through a
case study on a comprehensive EPiC accelerator, ADEPT, we
demonstrate key strategies to further reduce the carbon footprint
of EPiC accelerators, guiding future sustainable hardware design.

Index Terms—photonics, machine learning, sustainability.

I. INTRODUCTION

With the ongoing technological advancements in Artificial
Intelligence (AI) and the resulting escalation in computational
demands, carbon emissions from the Information and Com-
munications Technology (ICT) sector have been rapidly in-
creasing. Over the past decade, we have observed tremendous
growth in the size and usage of AI models. The size of
the GPT-based Large Language Models (LLMs) has grown
by 1000× from 2018 to 2022 [1]. The rapid growth in
AI usage has led to a 2.5× increase in the AI inference
infrastructure at Meta within just 1.5 years [1]. Traditional
CMOS-based hardware has been struggling to efficiently meet
these immense demands, as it no longer scales in area or
energy efficiency according to Moore’s Law. Consequently,
CMOS-based data centers performing trillions of daily in-
ferences collectively emit more carbon than countries like
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Ireland and Denmark, with emissions projected to rise even
more in the years ahead [2]–[4]. Therefore, there is an urgent
need for carbon-sustainable hardware solutions to support AI’s
continued growth.

Photonic computing has emerged as an energy-efficient al-
ternative to CMOS-based computing [5]–[12]. Photonics offers
orders of magnitude higher throughput and energy efficiency
over CMOS due to its ability to compute in the optical domain
with lower losses than electrical devices [5]–[7]. Photonic
computing enables efficient General Matrix-Matrix Multipli-
cation (GEMM) operation, which constitutes over 90% of the
operations in Deep Neural Networks (DNNs) [13]. As a result,
researchers have designed several Electro-Photonic (EPiC)
accelerators utilizing photonics for GEMM computations and
electronics for the remaining computations and memory [6]–
[8]. This approach shows significant advantages in terms of
throughput and energy efficiency over purely electronic sys-
tems and holds promise as a sustainable computing platform
for the future.

However, energy efficiency alone does not guarantee the
sustainability of a technology. Recent studies have shown
that the advances in energy efficiency and the increasing
complexity of manufacturing have led to manufacturing (em-
bodied) carbon becoming the dominant contributor to total
carbon emissions [4], [14], [15]. As an example, embodied
carbon now contributes 50%-82% of carbon emissions in cloud
servers due to the improvements in energy efficiency, which
reduced the operational carbon but increased the embodied car-
bon [16]. In the photonic computing domain, numerous studies
on EPiC accelerators report orders of magnitude higher energy
efficiency over CMOS-based computing [5]–[9], but none have
addressed the carbon emissions associated with fabricating
these accelerators. Therefore, a comprehensive study of the
carbon footprint of EPiC accelerators, encompassing both
operational and embodied carbon, is necessary to determine
whether photonics is a viable computing solution for AI.

Several studies have analyzed the embodied carbon of
CMOS chips and CMOS-based systems [14], [16]–[20], but no
model currently exists for calculating the embodied carbon of
photonic chips. To quantify the embodied carbon of photonic
chips, we need a model that incorporates the energy consump-
tion of each manufacturing step of photonic chips, GreenHouse
Gas (GHG) emissions during fabrication, and other carbon
costs. In this work, we address this gap by developing,
for the first time ever, a model to estimate the embodied



carbon of photonic chips, and then use this model to
analyze the carbon footprint of state-of-the-art (SOTA)
EPiC accelerators, providing a comprehensive assessment
of whether photonics can truly offer a carbon-sustainable
hardware solution for AI. The key contributions of our work
are as follows:
• We, for the first time, develop an embodied carbon model

of photonic chips. We utilize the carbon cost of various
processing steps [21], coupled with our estimate of a pro-
cess flow to fabricate a reasonably complex photonic chip
adapted from AIM-Photonics multi-project wafer technol-
ogy [22], that is suitable for EPiC accelerators.

• We develop an open-source tool, EPiCarbon1, that calculates
the carbon footprint of EPiC accelerators, encompassing
both operational and embodied carbon. EPiCarbon integrates
our embodied carbon model for the photonic chiplets, ACT
[14] for the electronic chiplets, and ECO-CHIP [17] for
the heterogeneous integration of an EPiC accelerator. Using
EPiCarbon, we perform a comprehensive carbon footprint
evaluation of the SOTA EPiC accelerators to assess their
viability as carbon-sustainable hardware for AI.

• Based on the carbon footprint evaluation of SOTA EPiC ac-
celerators, we propose design strategies to reduce the carbon
footprint of future EPiC accelerators through a case study
on one of the evaluated EPIC accelerators, ADEPT [6].
Our embodied carbon model demonstrates that photonic

chips require at least 4.1× less manufacturing energy than
28 nm CMOS chips and achieve significantly higher yields,
resulting in lower embodied carbon than CMOS. Through
the carbon footprint evaluation with EPiCarbon, we find that
the SOTA EPiC accelerators outperform electronic accelera-
tors in carbon sustainability for computationally demanding
workloads due to their efficiency in both operational and
embodied carbon, making them a promising solution to meet
AI’s growing computational needs.

II. BACKGROUND AND RELATED WORK

The Carbon Footprint (CF) of a chip can be calculated with
the well-established ACT model [14]. The CF of a chip has
two parts: Operational Carbon Footprint (OCF) and Embodied
Carbon Footprint (ECF). The total CF is the summation of
OCF over the lifetime of the chip and ECF. We can also
amortize ECF based on an application runtime and the lifetime
of the chip to estimate the carbon footprint of an application
for a specific runtime (CFapp) (Equation 1).

CFapp = OCF +
runtime
lifetime

× ECF (1)

OCF = Energyuse × CIuse (2)

ECF =
Area
Yield

× (EPA × CIfab + GPA + MPA) + Cpackage (3)

OCF is the product of the energy consumption and the car-
bon intensity (g/kWh) of the power source during the operation
(CIuse) (Equation 2). ECF encompasses several components:
(1) EPA (energy consumption of manufacturing per unit area

1We open-source EPiCarbon at https://github.com/bu-icsg/EPiCarbon
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Fig. 1: Cross-section of a photonic chip adapted from AIM
Photonics multi-project wafer (300 mm) technology [22].

of the chip) multiplied by the carbon intensity of the power
source during manufacturing (CIfab), (2) GPA (GHG emissions
from manufacturing tools per unit area of the chip), and
(3) MPA (material procurement costs per unit area of the
chip) (Equation 3). Lastly, the packaging carbon cost, Cpackage,
comes from the integration process of chiplet-based systems.
ACT provides the EPA, GPA, MPA, and packaging costs for
CMOS chips estimated from publicly reported data [21]. While
ACT uses a fixed packaging cost, studies like ECO-CHIP [17]
and 3D-Carbon [23] provide detailed estimates for different
packaging types, such as 3D and 2.5D.

There are also other works, such as FOCAL [19], which
provides a first-order CF estimation model for processors,
and GreenFPGA [18], which examines the CF of FPGAs.
However, these models are not applicable to EPiC accelerators,
because the ECF of photonic chips is not the same as CMOS
chips due to the differences in the manufacturing process
layers and yields. Our work introduces, for the first time, an
ECF model for photonic chips that can be used to estimate
the CF of any EPiC accelerator chip.

III. EMBODIED CARBON MODEL FOR PHOTONIC CHIPS

We perform a detailed layer-by-layer analysis of a photonic
chip’s fabrication process to formulate the embodied carbon
model. We use the cross-section of a photonic chip that is
shown in Figure 1 with off-chip laser sources. Here, we
postulate a fabrication scheme that would result in a schematic
cross-section that roughly matches that shown by Fahrenkopf
et al. [22]. The schematic cross-section is representative of
a type of ‘active’ photonic circuit, which incorporates modu-
lators that are necessary to manipulate the optical signals to
perform computation and signal routing.

A. EPA

A significant feature of photonic chips is that they are man-
ufactured using the same tools and, in many cases, the same
processes as CMOS technology. Therefore, to estimate the
EPA, we identify the necessary manufacturing steps for each
layer in the chip’s cross-section and use the corresponding
carbon cost data from Bardon et al. [21], the same source
used for CMOS EPA calculations. By adding up the carbon
cost of all the steps, we get the EPA.

https://github.com/bu-icsg/EPiCarbon


1) Process Layers: For the photonic chip shown in Fig-
ure 1, starting from a Silicon-on-Insulator (SOI) wafer, there
are silicon (Si) and silicon-nitride (SiN) layers for fabricating
the waveguides that facilitate optical signals. A germanium
(Ge) photodiode layer is formed, typically by epitaxy, for
sensing the processed light. The lower band-gap of germanium
(compared to silicon) allows for the detection of light at a
wavelength where silicon is transparent. To control the optical
signals inside the Si waveguide utilizing optical computing
components such as Mach-Zehnder Interferometers (MZIs) or
Micro-Ring Resonators (MRRs) electro-optically, p-type and
n-type regions are formed in the silicon. The Ge photodiode
similarly has doped regions (forming a p-i-n diode). These are
connected to heterogeneously integrated electric chips through
metal layers (M1 and M2) and via layers (V1 and V2). Bond
pads are placed on top to allow the chip to be connected
to other chips through different heterogeneous integration
methods, such as 3D or 2.5D. Finally, a deep trench is formed
to expose the waveguide edge, enabling the connection of
optical fibers to the photonic waveguides along the chip’s edge.

2) Manufacturing Steps: In general, for all layers, the com-
ponents are fabricated with the necessary lithography, etching,
and cleaning steps, followed by polishing and oxide deposition
by Chemical Vapor Deposition (CVD) process. The p-type and
n-type regions are generated by a combination of implantation
of dopant atoms into the silicon matrix (through openings in
lithographically patterned photoresist) and thermal activation
of the dopants. Openings (formed by reactive ion etch) on
the wafer surface for metal and vias are filled with ultra-thin
copper diffusion barrier and copper using a combination of de-
position and metal Chemical-Mechanical Planarization (CMP)
process. Additionally, the oxide that covers the waveguides is
typically planarized by dielectric CMP. Lastly, the trench is
created by lithography, etching, and cleaning. The full list of
manufacturing steps that we have utilized in our model will
be available in the EPiCarbon repository.

3) Assembling the Data and Estimating EPA: We first
collect the approximate median power and throughput per
wafer for each manufacturing step from the work by Bardon et
al., [21]. From this data, we calculate the energy consumption
for all the manufacturing steps and add them to calculate
the manufacturing energy per wafer. It should be noted that
different ranges in oxide thickness are utilized in photonic
versus electronic chips. Thicknesses used in photonic chips
are similar to the highest metal levels in CMOS chips (10th
to 16th metal layers in advanced nodes) due to the need to
avoid optical coupling between adjacent levels. As we use the
median energy per wafer, we exclude the very low-throughput
atomic layer deposition steps and very high-throughput CVD
steps used for lower metal levels [21]. We also assume the
facility energy to be 40% of the total energy according to [21].
In Figure 2(a), we show the EPA of a photonic chip and CMOS
chips for several technology nodes. We estimate the EPA of
a photonic chip to be 0.22 kWh/cm2, which is 4.1× lower
than a 28 nm CMOS chip. This difference grows with newer
technology nodes because the EPA increases as the technology

Fig. 2: Comparison of (a) EPA and (b) yield for different defect
densities (cm−2) of photonic (PH) and CMOS (CM) chips.

Fig. 3: Comparison of ECF growth with chip area for photonic
(PH) and CMOS chips across different technology nodes (assum-
ing coal power source and 0.1 cm−2 defect density). Higher yield
and lower EPA than CMOS chips (Figure 2) lead to lower ECF
in photonic chips.

node advances [14], [21]. As a result, the EPA of a photonic
chip is 9.8× lower than a 7 nm CMOS chip.

B. GPA and MPA

We consider the GPA of a 28 nm technology node [14]
as the GPA of a photonic chip. This is so that we can have
a conservative estimate from publicly available data for a
technology node with higher fabrication steps than photonics.
In reality, it is likely to be far less because a 90 nm or 65
nm technology node can suffice for photonics (but one where
193 nm optical lithography is harnessed for resolving small
spaces) [24]. We set the MPA of photonic chips as 500 g/cm2,
same as the CMOS chips [14], which is another conservative
estimation due to the lack of public data for photonic chips.

C. Yield

We use the widely applied Poisson model [25] for cal-
culating the yield of a photonic chip (as well as a CMOS
chip that we use for comparison later in the paper). Photonic
circuits typically use wide spaces between waveguides (to
avoid optical coupling), except in portions of the circuit area
associated with splitters, or points where coupling between
elements is required, like a micro-ring resonator next to a
waveguide. Hence, the nanometer-size defects that are typical
of advanced fabs do not have the same deleterious impact on
photonic chips as on densely packed CMOS chips. Taking the
yield model proposed by Zhang et al., [26], the critical area
can be estimated to be 20% of the total chip area. This critical
area corresponds to the area occupied by the waveguides and
the area around the splitters, where Zhang et al. [26] point out
that the defect would have a significant impact. Hence, for the
same defect density, photonic chips have a higher yield than
CMOS by a factor of e0.2 (Figure 2 (b)). The higher yield
of photonic chips lowers the ECF by reducing the number



  {
   "chiplets": [
     {
      "type": "cmos-logic",
      "tech": 20,
      "area": 6.51,
      "num_chiplets": 1,
     }
     {
      "type": "pic-logic",
      "tech": -1,
      "area": 0.56,
      "num_chiplets": 4,
     }
   ]
   "package": "2.5D-passive"
  }
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Fig. 4: Overview of EPiCarbon. The modular structure of the tool allows easy integration of any new chiplets or carbon model.

of chips wasted due to fabrication defects. As a result, with
higher yield and lower EPA, photonic chips burn significantly
lower embodied carbon than CMOS chips (Figure 3). In other
words, we can design a large photonic chip with the same
ECF as a small CMOS chip. For example, the ECF of a 6
cm2 photonic chip is similar to a 3 cm2 28 nm CMOS chip.
Due to the impact of yield, the ECF benefits of photonic chips
increase as we increase the chip area.

D. Packaging (Heterogeneous Integration)

In the SOTA EPiC accelerators, each photonic chiplet com-
municates with the other chiplets in the system via electrical
signals. Consequently, the packaging carbon models used for
fully-electric heterogeneous systems [17], [23] can be applied
to heterogeneously integrated photonic and electric chips in
SOTA EPiC accelerators. We use the ECO-CHIP model [17]
to estimate the packaging cost in our work.

E. Correctness of the Model

To justify the correctness of our model, we make the
following arguments.
• Inclusion of all possible components: Firstly, we consider

a reasonably complex photonic chip having the necessary
components to perform GEMM operations. While some
components (such as SiN waveguides) of the considered
photonic chip may not be required for all EPiC acceler-
ators, we avoid underestimating the embodied carbon by
considering all components.

• Similar design across various fabrication technology:
Secondly, fabrication technologies from different sources,
such as imec, amf (Singapore), or GlobalFoundries, may
utilize different designs and materials or differently opti-
mized process choices [24], [27]–[29]. We acknowledge
that variations across different technologies may result in
slight differences in EPA estimates. However, as supported
by the references [24], [27]–[29], the overall layer structure
and components across these technologies and AIMPhoton-
ics [22] are similar, leading to EPA values that are close to
ours, with variations small enough not to affect the overall
architectural conclusions.

• Validated by industry experts: Lastly, we validate the
process layers, their corresponding manufacturing steps, and
the yield model by discussing them with photonics manufac-
turing experts from the industry. For the carbon cost of the

manufacturing steps, our model uses conservative estimates
of the data from imec [21], which has been widely used for
embodied carbon evaluation of CMOS-based systems [4],
[14], [17], [18], [23].
Therefore, our model provides a reliable and conservative

estimate of the embodied carbon for photonic chips based on
publicly available data.

IV. THE EPICARBON TOOL

We develop the EPiCarbon tool to evaluate the CF of EPiC
accelerators. Figure 4 shows an overview of the tool. The
tool includes three separate APIs (Application Programming
Interface) to compute the ECF, OCF, and CF individually.

Inputs: To estimate ECF, the user inputs an architecture
description file in JSON format that lists the specifics for
all chiplets within the accelerator. Each chiplet entry includes
the chiplet type (CMOS or photonic), area, technology node
(for CMOS), and quantity. Additionally, the user specifies a
packaging type (3D, 2.5D-active/passive, etc.). To estimate
OCF, the user needs to input the energy per inference of
the accelerator. For CF, the user needs to provide both the
architecture description and energy per inference. Optionally,
a Power-Performance-Area (PPA) model of the accelerator
(generic such as [30], [31] or accelerator-specific) can be
plugged in to generate these inputs and call the desired API
from EPiCarbon. We use this approach for our case study on
ADEPT in Section VI.

CF Estimation: For ECF, EPiCarbon first parses the ar-
chitecture description file and instantiates the corresponding
chiplets and a packager. Each type of chiplet implements its
own ECF model. Photonic chiplets implement our ECF model
(described in Section III), whereas CMOS chiplets implement
the ACT ECF model. The packager uses the ECO-CHIP model
to calculate the packaging carbon based on packaging type
and chiplet information. The ECF is calculated by summing
the embodied carbon of all chiplets and packaging carbon.
EPiCarbon also estimates the embodied carbon of off-chip
memory devices using ACT if the user specifies any in the
architecture description.

For OCF, along with providing the accelerator’s energy per
inference, the user can also configure the number of inferences
per day and the lifetime of the accelerator. EPiCarbon calcu-
lates OCF for running the specified number of inferences per
day over the entire lifetime of the accelerator. The tool outputs



CF by summing ECF and OCF. Alternatively, the CF for a
specific runtime can be calculated using Equation 1.

Modularity of the tool: We design EPiCarbon in a modular
manner by creating separate classes for each chiplet type. A
user can easily include new types of chiplets by adding a new
chiplet class and implementing its embodied carbon model.
This makes EPiCarbon readily extendable to support other
emerging technologies like phase change memory or resistive
RAMs in the future.

V. CF ANALYSIS OF EPIC ACCELERATORS

In this section, we revisit the literature on EPiC accelerators
with a focus on carbon sustainability. We deploy EPiCarbon to
evaluate the CF of four widely recognized EPiC accelerators
along with the electronic accelerators that were used as com-
parison points in the corresponding EPiC accelerator papers
(listed in Table I). We use the area and energy per inference
numbers reported in the respective papers to compute the ECF
and OCF, respectively. The reported energy numbers of the
EPiC accelerators include laser, optical component tuning, data
modulation, electrical-to-optical and optical-to-electrical con-
versions, digital-to-analog and analog-to-digital conversions,
and memory accesses. The details of the energy breakdowns
can be found in the respective papers. ADEPT [6], Albireo [7],
and DEAP-CNN [32] run Convolutional Neural Networks
(CNNs): Alexnet and VGG-16; Lightening Transformer (LT)
[9] runs transformer models: BERT-large and DeiT-b.

It is worth noting that Nvidia-A100—an industry-scale
accelerator with multiple functionalities, including training and
sparsity optimizations—has a significantly larger area than
the academic accelerators. Directly comparing the embodied
carbon of A100 with other academic accelerators is not
entirely fair. Therefore, we only consider the portion of the
area responsible for mixed precision inference in A100 from
the chip snapshot [33]. In addition to the accelerators that
were compared in the EPiC accelerator papers, we include
TPUv4i, an industry-scale inference accelerator. We use the
reported 400 mm2 area, 138 TFLOP/s (bf16/8b int) peak
throughput, and 75 W mean power from [34], [35] in our
analysis. Table II lists the EPiCarbon parameter setup that
we use for our analysis, with the selected values representing
typical configurations in real-world scenarios.

TABLE I: Accelerators evaluated in our work. Configuration
details can be found in the corresponding accelerator papers. For
EPiC accelerators, the technology node refers to the technology
used for CMOS components within the accelerator.

Type Accelerator Configuration Tech. node of
CMOS (nm)

EPiC ADEPT [6] 128×128 single photocore 22
(Academic) ALBIREO [7] ALBIREO-C: 9 PLCGs 22

DEAP-CNN [8] Two convolutional units 22
Lightening- LT-L-8 14
Transformer (LT) [9]

Electronic Envision [36] Fixed, as per reference 28
(Academic) UNPU [37] Fixed, as per reference 65
Electronic Nvidia-A100 GPU [38] Fixed, as per reference 7
(Industry) TPUv4i [34] Fixed, as per reference 7

TABLE II: EPiCarbon configuration used in our work.
CIfab source Non-renewable energy (coal)
CIuse source Renewable energy (wind)
Yield model Poisson model
Defect density 0.1 cm−2

Packaging type 3D (EPiC), Monolithic (electronic)
Lifetime 5 years

A. Analyzing ECF

We begin by analyzing the ECF of the SOTA EPiC accel-
erators compared to the electronic accelerators. Figures 5(a)
and 5(b) present the reported chip area and peak throughput
(TFLOP/s) of the accelerators, respectively. As these accelera-
tors have different computing capabilities and we cannot make
a head-to-head ECF comparison, in Figures 5(c) and 5(d) we
show the area/TFLOP/s and ECF/TFLOP/s, respectively.

In Figure 5(c), we observe that the EPiC accelerators DEAP-
CNN and LT have similar or lower area/TFLOP/s than all
electronic accelerators, whereas ADEPT and Albireo have
higher area/TFLOP/s than TPUv4i and A100. However, in
Figure 5(d), we see that all EPiC accelerators have similar
or lower ECF/TFLOP/s than the electronic ones. This is
due to the lower fabrication cost and higher yield of the
photonic chiplet in the EPiC accelerators, which helps to
reduce the overall ECF of the chip, despite having large areas.
To better understand the contribution of photonic components
of the SOTA accelerators in ECF reduction, we provide a
detailed breakdown of both area and ECF across the various
components of the EPiC accelerators in Figure 6.

Firstly, in both ADEPT and LT, the primary contributors to
their ECFs are the CMOS components, as shown in Figure
6(a). This is due to a large fraction of their area being

Fig. 5: (a) Area (b) peak TFLOP/s, (c) area/TFLOP/s, and (d) ECF/TFLOP/s of the accelerators. EPiC accelerators achieve similar
or lower ECF/TFLOP/s despite some of them having larger area/TFLOP/s than electronic accelerators.



Fig. 6: (a) ECF and (b) area breakdown of the accelerators. For
some EPiC accelerators, the area is largely occupied by CMOS
components, leading to high ECF. Increasing the percentage of
the photonic area in an EPiC accelerator helps to reduce ECF.

dedicated to the supporting electrical components. Especially
in ADEPT, over 85% of the total area is occupied by on-
chip SRAM, significantly increasing its ECF and resulting
in the highest ECF/FLOP/s among the EPiC accelerators. As
explained in Section III, CMOS components contribute more
to the ECF than photonic components of the same area, as pho-
tonics provides a higher yield and lower EPA. Consequently,
although the area of LT is similar to Albireo (Figure 5(a)),
LT consumes ≈50% more ECF due to its higher proportion
of CMOS area than Albireo. Increasing the proportion of
photonic area can significantly reduce the ECF of an EPiC
accelerator. However, we cannot perform all operations in the
photonic domain. Thus, choosing the right ratio of photonic
to electrical area in EPiC accelerators is critical to minimizing
the ECF while achieving target performance.

For the cases where the photonic chiplet is the dominant
source of ECF (Albireo and DEAP-CNN), it is primarily due
to the large optical components like AWGs, star couplers, and
microcombs [7], [9], which occupy significantly larger areas
(100s-1000s µm length) compared to CMOS components. For
example, in Albireo, 72% of the area is occupied by only 9
AWGs, which are necessary for efficient data distribution in
its photonic compute cores [7]. Notably, DEAP-CNN is the
most compact among the EPiC accelerators, with an area of
≈30 mm2, due to its area-efficient MRR-bank-based design,
resulting in the lowest ECF among the EPiC accelerators.

B. Analyzing OCF

Figure 7 shows the throughput, energy/inference/s, and the
corresponding OCF/inference/s of the accelerators for the
reported DNN models. As mentioned earlier in this section,
the energy values are directly taken from the corresponding
papers, and for EPiC accelerators, the energy includes all
key components such as laser, optical component tuning, data
modulation, electrical-to-optical and optical-to-electrical con-
versions, digital-to-analog and analog-to-digital conversions,
and memory accesses.

In general, the figure demonstrates the reported advantages
of EPiC accelerators, achieving orders of magnitude higher
throughput and better energy efficiency than the electronic
accelerators. This operational efficiency comes from fast and
energy-efficient compute capabilities of photonics with lower
losses than CMOS. In Figure 7(b), ADEPT consumes the

Fig. 7: (a) Throughput, (b) energy/inference/s, and (c)
OCF/inference/s of the accelerators for the reported DNN models.
As reported in the literature, EPiC accelerators generally provide
higher throughput with better energy efficiency than electronic
accelerators, leading them to consume lower OCF.

lowest energy/inference/s for AlexNet and VGG-16, while LT
consumes the lowest for BERT-l and DeiT-b. For some EPiC
accelerators, such as DEAP-CNN and Albireo, high data con-
version costs between analog and digital domains and tuning
costs of the optical devices lead to higher energy/inference/s
than TPUv4i (also to keep in mind that the throughput for
TPUv4i is calculated assuming maximum utilization, which is
unlikely to be achieved in practice). In contrast, accelerators
like ADEPT and LT have optimized tuning strategies that
lead to low energy consumption. In Figure 7(c), we show
OCF/inference/s with ≈3µg carbon emission per Joule.

C. Analyzing CF

Figure 8 shows the total CF (ECF + OCF) for executing
one trillion inferences under varying throughput targets. One
can also experiment with different total number of inferences
and observe similar results. To meet these throughput goals,
we scale the number of accelerator chips accordingly. As the
total work (running 1T inferences) is fixed, increasing the
throughput target along the X-axis shifts the CF toward being
more ECF-dominant due to the increasing number of chips.

We observe that EPiC accelerators achieve lower CF than
the electronic accelerators for all throughput goals, with
an exception for Alexnet. This CF advantage of the EPiC
accelerators comes from both OCF and ECF efficiency of
photonic chips (lower carbon per throughput than CMOS).
As an example, for BERT-l and DeiT-b, LT achieves the
lowest CF across all throughput goals. For low throughputs
achievable with a single chip, LT wins with its lowest OCF
per throughput and ECF per throughput (see sections V-A
and V-B for reference). At higher throughputs, where ECF
dominates, its ECF efficiency becomes the key driver of its
carbon advantage over the electronic accelerators.



Fig. 8: Total CF of accelerators running 1 trillion inferences
across different throughput goals. The SOTA EPiC accelerators
are more carbon efficient than the electronic accelerators for
computationally demanding workloads.

For VGG-16, ADEPT, with its highest OCF efficiency,
achieves the lowest CF in the OCF dominant scenarios (up
to 104 inference/s). However, as the throughput goal increases
and the scenario becomes ECF-dominant, DEAP-CNN and
Albireo become more carbon sustainable options with their
higher ECF efficiency than ADEPT.

Alexnet requires significantly less computation compared
to the other models—for instance, it involves only 0.7 billion
FLOPs, while VGG-16 requires 15 billion FLOPs [39]. As a
result, even at low throughput targets (≤ 104 inferences/s),
the scenario remains ECF-dominant, and a single tiny chip
like UNPU or Envision is sufficient to meet the throughput
demand. This represents an edge-device-like workload, for
which the current EPiC accelerators (designed for heavy
computation) are over-provisioned. In such scenarios, their
low utilization leads to inefficiency, making the compact, low-
power electronic accelerators like UNPU or Envision a more
carbon-efficient choice.

Takeaway: EPiC accelerators are more carbon-sustainable
than electronic accelerators for computationally heavy work-
loads with efficiency in both embodied and operational
carbon, making them a strong candidate for supporting the
escalating compute demands of AI.

VI. STRATEGIES TO IMPROVE CF OF EPIC
ACCELERATORS: A CASE STUDY USING ADEPT

In this section, we explore several strategies to improve
the CF of EPiC accelerators through an ADEPT design case
study. To estimate ADEPT’s CF under varying parameters, we
use ADEPT’s PPA estimator model developed by Demirkiran
et al. [6]. and plug it in with EPiCarbon. Although ADEPT
has numerous design parameters, we focus on weight SRAM
size, activation SRAM size, photonic core size, and technology
node of the CMOS chiplet. This is because (1) ADEPT has
a large area that leads to the highest ECF among the EPiC
accelerators, and the stated parameters have the highest impact
on the area in ADEPT. (2) These parameters are common in all

Fig. 9: (a) ECF, (b) OCF/inference, (c) CF/inference (amortized
ECF) for ADEPT and ADEPT* (ADEPT with reduced weight
SRAM size).
EPiC accelerators, and insights from their CF impact analysis
can be broadly applied. In the following experiments, we
change one parameter at a time, keeping all other parameters
fixed as in the original paper (300 MB weight SRAM, 100
MB activation SRAM, 128×128 single photonic core, 22 nm
CMOS chiplet, and 10 GHz frequency) [6].

A. Weight SRAM size

ADEPT has a huge 300 MB weight SRAM to minimize
the cost of loading weights from the DRAM. In Figure 9,
we explore the carbon impact of reducing the weight SRAM
size to 32 KB (ADEPT∗ design), which can hold twice the
number of weights that the ADEPT compute core can process
at a time. We use a double buffering approach, which is
a common practice in many architectures. We assume the
DRAM has sufficient bandwidth (e.g., HBM with >1 TBPS
bandwidth [40]) to sustain peak throughput of the accelerator.
Therefore, the throughput is not impacted by this change
in the weight SRAM size.

Reducing the size of the weight SRAM to 32KB decreases
the CMOS area by 2.9× in ADEPT, resulting in a 5.2×
reduction in ECF (see Figure 9(a)). However, reducing the
weight SRAM size forces the model weights to be fetched
from the DRAM for each batch, as the entire model can
no longer fit in the SRAM. This increases the total energy
consumption and, in turn, increases OCF by 1.27× on average
(over four DNN workloads) (see Figure 9(b)). This OCF
increase is minimal for models with higher arithmetic intensity,
such as Efficientnet-b7, with only a 1.01× increase, whereas
it is the highest in VGG-16 (1.6×), as VGG-16 has the lowest
arithmetic intensity. Despite the increase in OCF, reducing
weight SRAM size can significantly reduce CF. In Figure
9(c)), we show the CF per inference (amortized ECF for single
inference time following Equation 1) for VGG-16, the model
with the highest OCF increase. By reducing the weight SRAM
to our proposed size, ADEPT’s CF/inference is reduced by
≈44% for VGG-16, and ≈49% on average for all models.

B. Activation SRAM size

Figure 10 shows the impact of activation SRAM size on
throughput, ECF, OCF/inference, and CF/inference (amortized
ECF for single inference time). Increasing activation SRAM
size allows for larger batch sizes, which increases throughput
until the compute core reaches maximum utilization (Figure
10(a)). Larger batch sizes also reduce OCF by amortizing
the weight loading cost from SRAM to photocore (Figure



Fig. 10: Impact of the activation SRAM size on (a) throughput, (b)
ECF, (c) OCF/inference, and (d) CF/inference (amortized ECF).
CF-optimal activation SRAM sizes are marked with * in (d).

Fig. 11: Impact of the photocore size on (a) throughput, (b) ECF,
(c) OCF/inference, and (d) CF/inference (amortized ECF).

10(c)). At the same time, increasing the activation SRAM
size increases the chip area, raising ECF (Figure 10(b)). Thus,
for a given DNN workload, there exists an optimal activation
SRAM size that balances the trade-off between ECF and OCF.
We have marked this SRAM size for the different networks
in Figure 10(d). Here, by reducing the activation SRAM from
100 MB in the original design to 64 MB, CF/inference can
be reduced by ≈18% in ADEPT on average for the evaluated
workloads, without any loss in throughput.

C. Photonic core size

In Figure 11, we show the impact of different photonic
core (photocore) sizes on throughput, ECF, OCF/inference,
and CF/inference (amortized ECF for single inference time).
Firstly, as we increase the photocore size, ECF increases
(Figure 11(b)). From the ECF breakdown, we observe that
although the larger photocore area contributes to the ECF
increase, the CMOS ECF rises even more, dominating the
total ECF. This is because to support the increased photocore
size, additional CMOS components (e.g. data converters) are
needed. The additional CMOS components, combined with the
SRAM, significantly degrade yield, leading to a high ECF.

In Figure 11(c), we observe that OCF/inference decreases
up to a certain photocore size, and then starts to increase. This

Fig. 12: Impact of technology node of CMOS on (a) ECF, (b)
OCF/inference, and (c) CF/inference (amortized ECF). Going
from 28 nm to up to 10 nm can significantly reduce CF/inference.

is because of the saturating throughput (Figure 11(a)), which
fails to compensate for the exponentially rising laser power
with the increasing photocore size [6]. As a result, in Figure
11(d), CF/inference also decreases and then starts increasing
back up. For the DNN workloads in our experiment, we
identify 256×256 to be the carbon-optimal photocore size, as
against the 128×128 proposed in the paper, reducing ADEPT’s
CF/inference by ≈30% on average.

D. Technology node of CMOS chiplet

Typically, as the technology node of CMOS shrinks, it
reduces energy consumption and area, which offsets the
increased manufacturing carbon associated with the smaller
nodes [19]. Therefore, switching to smaller nodes can reduce
CF without any loss in throughput. However, advanced CMOS
nodes (<10 nm) no longer shrink as per Moore’s law and can-
not offset the increased manufacturing carbon, which leads to
diminishing CF improvements or even higher CF [19]. Hence,
careful selection of the technology node for the CMOS chiplet
is crucial to achieving the optimal CF in EPiC accelerators.

To evaluate the carbon impact of using different technology
nodes in the CMOS chiplet of ADEPT, we use the area
and energy scaling model from ECO-CHIP [17]. Figure 12
shows the change in ECF, OCF/inference, and CF/inference
(amortized ECF for single inference time) across various
technology nodes from 28 nm to 7 nm. Figure 12(a) shows
that as the technology node scales down from 28 nm to up to
10 nm, ECF decreases significantly; however, scaling beyond
10 nm leads to an increase in ECF. The OCF/inference also
reduces with smaller nodes, but the rate of reduction saturates
at the advanced nodes (Figure 12(b)). As a result, in Figure
12(c), CF/inference reduces for up to 10 nm and then starts to
increase. For the original ADEPT design with a 22 nm CMOS
chiplet, switching to 10 nm can reduce the CF/inference by
71% on average across the DNN workloads.

VII. CONCLUSION

In this paper, we demonstrate the potential of photonics
to offer a sustainable computing solution for DNNs, even
under a conservative assessment. We present our open-source
EPiCarbon tool, to estimate the CF of EPiC accelerators and
perform a comprehensive CF analysis of the SOTA EPiC
accelerators. We hope that this tool will benefit the com-
puter architecture community towards developing a carbon-
sustainable computing environment for AI with photonics.
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