
2025 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

PIMnet: A Domain-Specific Network for Efficient
Collective Communication in Scalable PIM

Hyojun Son1 Gilbert Jonatan1 Xiangyu Wu1 Haeyoon Cho1 Kaustubh Shivdikar2

José L. Abellán3 Ajay Joshi4 David Kaeli2 John Kim1

1KAIST 2Northeastern University 3Universidad de Murcia 4Boston University
{processor, gilbertjonatan, wuxiangyu, haeyoon.cho}@kaist.ac.kr, shivdikar.k@notheastern.edu

jlabellan@um.es, joshi@bu.edu, kaeli@ece.neu.edu, jjk12@kaist.edu

Abstract—Processing-in-memory (PIM), where compute is
moved closer to memory or data, has been explored to accelerate
emerging workloads. Different PIM-based systems have been
announced, each offering a unique microarchitectural organiza-
tion of their compute units, ranging from fixed functional units
to programmable general-purpose compute cores near memory.
However, one fundamental limitation of PIM is that each compute
unit can only access its local memory; access to “remote” memory
must occur through the host CPU – potentially limiting applica-
tion performance scalability. In this work, we first characterize
the scalability of real PIM architectures using the UPMEM PIM
system. We analyze how the overhead of communicating through
the host (instead of providing direct communication between
the PIM compute units) can become a bottleneck for collective
communications that are commonly used in many workloads.
To overcome this inter-PIM bank communication, we propose
PIMnet – a PIM interconnection network for PIM banks that
provides direct connectivity between compute units and removes
the overhead of communicating through the host. PIMnet ex-
ploits bandwidth parallelism where communication across the
different PIM bank/chips can occur in parallel to maximize
communication performance. PIMnet also matches the DRAM
packaging hierarchy with a multi-tier network architecture.
Unlike traditional interconnection networks, PIMnet is a PIM-
controlled network where communication is managed by the PIM
logic, optimizing collective communications and minimizing the
hardware overhead of PIMnet. Our evaluation of PIMnet shows
that it provides up to 85× speedup on collective communications
and achieves a 11.8× improvement on real applications compared
to the baseline PIM.

I. INTRODUCTION

Emerging workloads, such as deep neural networks, demand
computational capabilities beyond those provided by general-
purpose architectures [28]. As a result, domain-specific archi-
tectures are commonly used to support the necessary com-
putations [19], [40], [54], [73], [80], [86]. However, system
performance is often bottlenecked by the memory system
and by the movement of data to/from the main memory
system [21], [45]. This bottleneck is becoming more prob-
lematic from data-intensive workloads that require large mem-
ory capacities and high memory bandwidth. Processing-in-
memory (PIM) has been proposed as a potential solution
to reduce the memory bandwidth gap and improve overall
performance [64]. Recently, memory vendors have announced
different PIM modules, including the Samsung HBM function-
in-memory (FIM) [55], SK Hynix GDDR-based PIM [58], and
the UPMEM DPU [25].

The type of compute across the different PIMs differ in
terms of compute throughput and programmability. For ex-
ample, SK Hynix PIM [58] has fixed functional units while
Samsung FIM [59] provides some (limited) programmable
compute logic. UPMEM [25] provides a general-purpose com-
pute core near the memory banks. All PIM implementations
pursue a similar goal of trying to minimize changes to the stan-
dard memory interface (e.g., DDRx protocol) while providing
computation near the memory. However, the compute unit or
logic only has access to its “local” memory (or memory bank)
and cannot access “remote” memory or data located near other
compute units or banks. Thus, one fundamental limitation of
current PIM architectures is that remote memory accesses
or accesses to a “non-local” PIM bank 1 occurs through the
host CPU. This indirect PIM-to-PIM communication through
the host impacts both the latency and bandwidth of inter-PIM
communications.

In many parallel workloads, collective communication is
commonly used between multiple nodes to communicate or
exchange data following computation and is commonly used
in CPUs [15], [84] and GPUs [3] through collective communi-
cation libraries. Modern PIM SDK (such as UPMEM [6]) pro-
vides some collective operations (e.g., gather, broadcast) and
SimplePIM [16] provides an additional interface/wrapper to
support collective communication. Recently, PID-Comm [67]
proposed optimizations to improve collective communication
for PIM by reducing the collective communication overhead
in the host CPU. However, PID-Comm is a software-based
approach to accelerate collective communication, and unlike
other nodes such as CPUs or GPUs that have inter-node
interconnect, the performance of collective communication in
PIM is fundamentally limited by the communication band-
width to/from the host CPU. Thus, in this work, we propose a
PIMnet architecture where a domain-specific network [7] en-
ables direct communication between PIM banks and efficiently
accelerates collective communication.

Prior work [20], [83], [89] has proposed interconnecting
DIMMs to provide direct communication between the DIMMs.
While these work avoids communicating through the host,
they assume that the near-memory compute unit is placed

1In this work, we refer to a PIM bank as the unit of compute and “local”
bank memory. We use PIM bank and PIM node terminology interchangeably.

on a centralized buffer chip in the DIMM. In comparison,
the benefits of PIM are maximized when near-memory com-
pute is provided at a bank granularity, in order to exploit
internal memory bandwidth [25], [58], [59] and prior work
do not enable communication between near-bank PIM nodes.
Given a large number of banks, introducing a general-purpose
interconnect between the DIMM (or banks) is prohibitively
expensive because of memory technology limitations (e.g.
limited number of metal layers) and the hardware overhead;
thus, we propose a domain-specific network [7] for PIM that
targets collective communication which is commonly found in
many emerging workloads [17], [65].

In this work, we first revisit the impact of inter-PIM com-
munication by using a roofline model analysis and demonstrate
the potential benefit of PIM interconnection network and
how direct communication improves inter-PIM communica-
tion bandwidth and collective communication performance.
We also show how the scalability of modern PIM systems
from collective communication is limited, even with an ideal
software-based collective communication on a PIM system. To
enable PIM scalability when communication is required, we
propose PIMnet – a processing-in-memory interconnection
network to enable direct communication between the PIM
banks across all DIMMs sharing the same memory bus
channel. Thus, PIMnet avoids the high cost of communicating
through the host (or the CPU). In particular, we exploit the
communication or traffic pattern of collective communication
to design a PIM-controlled interconnection network. The inter-
PIM communication is carefully managed or “orchestrated”
by the PIM to ensure on-chip communication contention
is removed while minimizing the interconnection network
hardware overhead. Two critical factors in any interconnection
network are technology and the packaging constraints [23].
PIM interconnect presents unique challenges because of the
memory packaging hierarchy and the memory technology
constraints that limit the amount of logic and wire that can
be introduced. PIMnet is a multi-tier topology that exploits
both a direct and an indirect network to match the packaging
hierarchy of PIM (or memory) systems and the collective
communication pattern. PIMnet exploits PIM bandwidth par-
allelism (or parallel communication among different PIM
banks) which can be exploited when local (e.g., inter-bank)
communication can be performed in parallel. By providing
direct communication between the PIM banks without support
from the host, PIMnet enables performance to scale as the
number of PIM banks increases. Effectively, the goal of
PIMnet is to enable “One Gigantic PIM” architecture, instead
of an architecture that is a collection of many PIM banks. In
particular, the key contributions of this work include:

• We identify a bottleneck of communication in modern
PIM architectures that limits scalability as communica-
tion occurs through the host and demonstrate the perfor-
mance limitation on the UPMEM PIM system.

• We propose PIMnet – a domain-specific interconnection
network for PIM that enables efficient collective com-

Fig. 1: High-level block diagram of a UPMEM system that
consists of regular DIMM and PIM-enabled DIMMs.

munication through direct connectivity between the PIM
nodes and avoid indirectly communicating through host.

• We propose a PIMnet architecture that matches the mem-
ory packaging constraints through a multi-tier intercon-
nect. PIMnet is PIM-controlled interconnect as PIM logic
orchestrates communication between the PIM banks to
exploit the PIM bandwidth parallelism.

• We evaluate the benefits of PIMnet and show compared
to communicating through the host, collective communi-
cation performance can be improved by up to 85×.

II. BACKGROUND

A. UPMEM PIM Architecture

To evaluate the scalability of a representative PIM-based
memory system, we use the UPMEM architecture [25]. While
other PIM architectures such as Samsung HBM PIM [59] or
SK Hynix GDDR PIM [58] have been announced, they are
not publicly available. Even more importantly, the UPMEM
architecture provides the most flexible PIM solution in terms
of general-purpose computation that can be exploited for near-
data processing. Figure 1 presents a high-level block diagram
of a UPMEM PIM system. Inside each chip, there are 8
DRAM Processing Units (DPUs) and 8 64-MB memory banks.
Each DPU has 14-stage pipeline, 32-bit processor, that sup-
ports up to 24 hardware threads, called tasklet. [25] Each PIM
bank consists of a DPU, 64-MB main memory bank (MRAM),
a 24-KB instruction memory (IRAM), and a 64-KB scratchpad
memory (a software-managed cache called WRAM). The
PIM-enabled memory system is organized hierarchically –
multiple PIM banks on a single PIM chip, multiple chips on a
DIMM, and multiple DIMMs in the system. The host CPU can
read/write data from/to MRAM through the DDR4 interface
using UPMEM APIs [6]. Only data located in WRAM can
be used for computation and the DMA module is responsible
for moving the data between MRAM and WRAM within each
bank.

B. Collective Communications

Collective communication is defined as communication that
occurs in a coordinated manner between a group of processes
or nodes in a parallel (distributed) system [15], [84]. Common
collective communication patterns include AllReduce, where
reduction operations (e.g., average, sum, etc.) are performed
on partial sums across multiple nodes, and All-to-All where
all pairs of nodes exchange data. Collective communication is
a critical component of many parallel algorithms and applica-
tions in high-performance computing (HPC) [30], [69]. These

PID-
Comm [67]

DIMM-
Link [89]

NDPBridge [85] PIMnet
(This work)

Inter-bank
communication

CPU Buffer
chip

Buffer chip Memory
chip

Inter-chip com-
munication

CPU Buffer
chip

Buffer chip Buffer chip

Inter-rank
communication

CPU Dedicated
link

CPU Memory
bus

Collective op-
eration

CPU Buffer
chip

N/A PIM bank

TABLE I: Qualitative comparison of PIMnet with prior work
regarding where inter-PIM communication is done. Collective
operation refers to the computation necessary in some collec-
tive communication (e.g., reduction operation in AllReduce).

operations have also become important in many emerging
workloads, including deep neural networks [74], [78]. As the
number of nodes increases, collective communication is a
critical component in communication performance and has a
direct impact on overall system performance.

Most prior work for PIM do not target workloads where
communication is required between the PIM banks because
of high overhead of PIM-to-PIM communication. Recent work
have proposed improving PIM-to-PIM communication through
a collective communication API interface (SimplePIM [16])
and optimizing the host CPU overhead for collective commu-
nication (PIM-Comm [67]). However, these work are effec-
tively “software”-based approaches to collective communica-
tion and are limited by the bandwidth available to/from the
host CPU. Other work [85], [89] have proposed hardware-
based communication between DRAM but do not provide
direct PIM bank-to-bank communication. In comparison, this
work proposes an efficient hardware-based collective commu-
nication for PIM-to-PIM communication. To the best of our
knowledge, this is one of the first work to propose a PIM-
specific interconnection network. The qualitative comparison
between PIMnet and prior work is summarized in table I.

C. Evaluation Methodology

In this work, we use the UPMEM PIM system [25] since
it is publicly available and programmability (or flexibility)
is provided with a general-purpose compute logic. However,
our observations on scalability (or limited inter-bank PIM
communication) apply to other commercial PIM architec-
tures [58], [59]. The configuration of the UPMEM system
used in our evaluation is shown in Table II. For evaluation,
we developed kernel code using the UPMEM API [6] (which
is based on C) and the source code is partitioned into host
code that is executed on the CPU, and kernel code that is
offloaded to the PIM DPU. While there has been recent work
on collective communication in UPMEM systems [16], [67],
benchmarks with collective communication were not readily
accessible. Thus, we implemented similar workloads as prior
work including BFS, CC, MLP, and GEMV. The baseline
collective communication (using the host) was implemented
used UPMEM API – identical to how collective communica-
tion was implemented in SimplePIM [16]. We also evaluated
two emerging workloads – the embedding table (EMB) found

Configuration
CPU Intel(R) Xeon(R) Silver

4215R CPU @ 3.20GHz
Number of PIM DIMM 20 DIMMs (20 Ranks)
Number of regular DIMM 4 DIMMs
Number of DPUs 2560 DPUs
DPU Frequency 350 MHz
PIM-Enabled Memory 171 GB
DRAM Memory 96 GB

TABLE II: System configuration of the UPMEM server.

Fig. 2: Roofline models to demonstrate the potential benefits
from a direct PIM-to-PIM interconnect, including (a) tradi-
tional roofline model [87] and (b) modified roofline model
using communication arithmetic intensity [14].

in deep learning recommendation models (DLRM) [65] and
Number Theoretic Transform (NTT), used in Fully Homo-
morphic Encryption [17]. NTT was implemented based on
iterative FFT algorithm, and merged Cooley–Tukey NTT
optimization [79] with N = 216 (number of coefficients).
2D NTT [12] was also implemented – i.e., two computation
NTT steps with each step consisting of 256 256-point NTTs
using 16 tasklets on each DPU. The computation steps in 2D
NTT are column-wise NTTs followed by row-wise NTTs that
required All-to-All collective communication.

III. MOTIVATION: PIM SCALABILITY LIMITATION

Prior work [39], [47], [67] have identified challenges from
the lack of inter-PIM communication in modern PIM systems.
In this section, we revisit the challenges of inter-PIM com-
munication and the limitations of PIM scalability caused by
the communication between the PIM and the host CPU. In
particular, we use the roofline model to present the potential
performance benefits from a dedicated PIM interconnect.
We then present the scalability limitations of the collective
communications on the UPMEM PIM system.

A. Roofline Model

Two different roofline models are shown in Figure 2 to
highlight the potential benefits of a dedicated PIM intercon-
nect (shown as PIMnet). We compare PIMnet with the
baseline PIM based on the UPMEM [25] and two alternative
PIM collective communication modeling – Max DRAM BW
and Software(Ideal). Max DRAM BW assumes that the

(a) AllReduce (b) All-to-all

Fig. 3: Scalability comparison of (a) AllReduce and (b) All-
to-all collective communication across different PIM imple-
mentations.

DRAM bandwidth (e.g., 19.2 GB/s) can be fully utilized
for collective communication 2 while Software(Ideal)
models an idealized software-based collective communication
where only communication to/from the host are modeled and
the host overhead is assumed to be zero. 3

Figure 2(a) shows a conventional roofline model that plots
operational intensity against compute throughput. Since all
implementations have the same internal memory bandwidth,
the sloped line is identical with the maximum horizontal line
showing the compute limit maximum compute throughput
of the PIM system. However, workloads that require inter-
PIM communication result in lower system (compute) utiliza-
tion from the communication overhead (Baseline PIM).
Increasing the DDR bandwidth utilization (Max DRAM BW)
improves the compute throughput slightly while using an opti-
mized software collective communication can further increase
the compute throughput (Software(Ideal)). However, all
of these approaches require communication through the host
and are limited by the bandwidth (and the serialized commu-
nication) through the shared memory channel. In comparison,
a dedicated PIM interconnect (PIMnet) can theoretically
achieve throughput that nearly matches the throughput of
the underlying PIM architecture, achieving approximately 8×
more compute throughput than Software(Ideal).

An alternative roofline model that uses communication
arithmetic intensity [14] or the number of operations per
amount of bytes sent over the network is shown in Fig-
ure 2(b). Using this model, the difference in the collective
communication bandwidth is shown through the different
slopes of the roofline plot. For PIM workloads that require
communication, the roofline model shows how most of the
region will be communication-bound, shown by the sloped
line for Baseline. The other two approaches improve the
communication bound but with a hardware-based PIMnet,
the PIM workloads become less communication bound and
maximize PIM compute throughput.

2Prior work [39] demonstrated that the DRAM bandwidth that can be
achieved on the DDR4 UPMEM system is between 4.7 and 16.9 GB/s.

3An example of software-based collective communication includes PID-
Comm [67] which optimizes collective communication compared to the base-
line PIM; however, such software approach only reduces the host overhead but
PIM-to-PIM communication still requires communication through the host.

Design Goals PIMnet Design
Low-radix network Ring bank-to-bank network
Simplify arbitration No hardware arbitration through scheduling
No network buffers No network contention

Minimize pins Utilize existing channels

TABLE III: PIMnet design goals and how PIMnet achieves
the design objectives highlighted.

B. Collective Communication Scalability

Performance scalability of the collective communication
across different PIM-based implementations is shown in Fig-
ure 3. The results are shown for weak scaling as the message
size is proportionally increased as the number of PIM banks
(or DPUs) is increased. The results are normalized to the
baseline system at 8 PIM banks. Similar to the roofline
model analysis, PIMnet is compared to Baseline [16], [25]
and Software(Ideal) – an ideal implementation of PID-
Comm [67] where all host overhead is removed. The baseline
PIM results in the lowest performance and an ideal software
implementation provides significant performance improvement
compared to the baseline implementation for AllReduce.
However, both are still “software” implementations, and the
scalability is limited beyond 64 banks when multiple DIMMs
(or ranks) within the same channel are utilized. In compari-
son, a dedicated PIM interconnect provides not only higher
performance but also better scalability as PIMnet does not
communicate through the host CPU. In addition, PIM band-
width parallelism can be exploited as the number of ranks
increases beyond one as local AllReduce within each rank or
chip can be done in parallel. While the global reduction is
limited to the DDR memory channel bandwidth, the amount
of data that needs to be communicated after local reduction is
much smaller – thus, effectively improving overall scalability.
The benefit of PIMnet for All-to-All is lower since all traffic
is global and bottlenecked by the DDR memory channel band-
width; however, the benefit of PIMnet is still approximately
2× compared to an ideal software implementation through 256
DPUs. In this work, we assume 64 DPUs per rank and 4 ranks
per memory channel; thus, PIMnet only provides connectivity
between the 256 DPUs within a single memory channel. When
DPUs across multiple channels need to communicate, PIMnet
still requires communication through the host – similar to the
baseline PIM system. It remains to be seen if PIMnet can be
extended to inter-memory channel communication.

IV. PIMNET ARCHITECTURE

An interconnection network between PIM nodes presents
new challenges and opportunities. Because of memory pack-
aging constraints and limited amount of logic in memory
technology, a conventional hardware-based interconnect router
microarchitecture is not feasible. Hence, we propose PIMnet
– a domain-specific interconnection network [7] for inter-
PIM bank collective communication between the PIM nodes.
An important characteristic of collective communication is
determinism in the communication pattern – i.e., the source,
the destination, and the message size are known ahead of

Fig. 4: High-level overview of the PIMnet that consists of (a)
inter-bank, (b) inter-chip, and (c) inter-rank networks to enable
direct inter-PIM communication.

time [8]. PIMnet exploits this behavior to enable a PIM-
controlled interconnect that orchestrates the communication.
In this section, we describe the necessary software changes to
enable efficient collective communication through PIMnet and
present the PIMnet microarchitecture in the following section.

A. PIM-constrained Interconnect

The cost of an interconnection network and routers is often
defined by the buffers and crossbar datapath as well as the
arbitration that is often on the critical path [48]. A unique
constraint of PIM interconnect is that the technology is based
on memory (or DRAM) process technology – resulting in
limited availability of logic and wires/bandwidth. As a result,
the design objectives of PIMnet include the following:

• Keep radix low: Maintain low port count to enable
low switch/crossbar complexity, which is proportional to
O(k2) where k is the switch radix.

• Simplify arbitration: Reduce or avoid switch arbitration
to minimize impact on the critical path and network
throughput.

• No Buffers: Minimize the amount of switch input buffers
to reduce router overhead.

• Minimize “pins”: Adding more pins to existing DRAM
packaging is infeasible while introducing more wires
within a chip is also very costly because of limited metal
routing resources.

To achieve these objectives, general-purpose interconnec-
tion network is prohibitively expensive given the DRAM
constraints. We propose a domain-specific interconnection
network where communication is “scheduled” to avoid the
complexity of a conventional interconnection network. In-
stead of dynamic flow control with buffering and arbitration,
communication is scheduled such that contention does not
occur – thus, removing the need for any input buffers and
arbitration. The key observation is that the communication
traffic pattern is known ahead of time or is deterministic.
For example, collective communication such as AllReduce
and All-to-all communications for global communication be-
tween PIM banks have known communication patterns (i.e.,
source/destination and traffic amount) and can be scheduled.

Inter-bank Inter-chip Inter-rank
Physical channels Bank I/O bus DQ pins DDR bus
channel 4 2 1 (half-duplex)
Width per 16 4 64
channel (b)
Bandwidth per 0.7 1.05 16.8
channel (GB/s)
Physical topology ring crossbar bus
Router PIMnet stop Buffer chip Buffer chip

TABLE IV: Comparison of different network hierarchy in
PIMnet.

In this section, we describe PIMnet which requires changes to
the PIM architecture, both in terms of the hardware and the
software. We use the UPMEM as our baseline and avoid mod-
ifyi ng the DDR interface to the host to ensure compatibility
with the existing host/CPU interface.

B. PIMnet Overview

To avoid the communication performance overhead through
the host, PIMnet provides a dedicated inter-PIM interconnect
for communication. A high-level block diagram of the PIMnet
is shown in Figure 4, which consists of a multi-tier intercon-
nect to match the DRAM packaging hierarchy. At the lowest
level, inter-bank network provides connectivity between banks
within a single chip. The next level of interconnect is the inter-
chip network that connects multiple chips together within a
single rank. The last level of interconnect is the inter-rank
network across the different ranks (or DIMMs) that share
the same memory channel. To address the PIM-constrained
challenges, PIMnet has the following principles (Table III):

• Utilize existing DRAM pins and/or on-chip wires to
maximize DRAM constraints.

• PIM-controlled interconnect, where the interconnect or
communication is managed by the PIM units.

• Data movement is “scheduled” to avoid contention and
minimize interconnect complexity.

A high-level qualitative comparison of the three tiers of
PIMnet is provided in Table IV. The configuration shown
is only one possible implementation of PIMnet and different
configurations as possible, as long as the DRAM packaging
constraints are met – e.g., instead of a bi-directional ring
for inter-bank, a unidirectional ring with 2 channels and
32 bits per channel can be created. All three tiers utilize
existing interconnect/pins as much as possible. Because of the
packaging constraints, the bandwidth provided across each tier
differs. Within each chip, approximately 0.7 GB/s per bank
channel results in a bisection bandwidth of 2.8 GB/s. With 8
chips per rank, the total inter-bank bisection is approximately
2.8 × 8 = 22.4GB/s. When all banks communicate in parallel
for bandwidth-optimal collective communication (e.g., Ring
AllReduce), PIMnet provides 2.8 × 64 = 179.2GB/s of ag-
gregated send and receive bandwidth per rank. Each tier also
differs in the topology as the inter-bank is a direct network
where each PIM node has its own “router” while both the
inter-chip and inter-rank are indirect network by exploiting
the buffer chip to enable PIMnet.

(c) (d)

1: BEFORE: // PIM code before
// communication

2: St READY, 1
3: POLL: ld $r1, START
4: bz $r1, Poll
5: RS: pld $r1, GEN_ADDR
6: pld $r2, EJECT
7: add $r1, $r1, $r2
8: st $r1, GEN_ADDR
9: ld $r1, GEN_ADDR
10: st $r1, INJECT
11: ld $r1, COMPLETE
12: bnz $r1, AFTER
13: WAIT: ld $r1, BUBBLE
14: bnz $r1, WAIT
15: jmp RS
16: AFTER: // PIM code after

// communication

(a)

// Pre-processing
1: AllocatePIMBanks()
2: LoadPIMBinary()
...

// Host collective communication
4: Host_ReduceScatter() {

Gather()
Reduce()
Scatter()

}

// Post-processing
6: RetrieveOutput()

Ho
st

PI
M

PI
M

Ho
st

Ho
st

(b)

// Pre-processing
1: AllocatePIMBanks()
2: LoadPIMBinary()
...

// Post-processing
6: RetrieveOutput()

Ho
st

PI
M

Ho
st

// Execute kernel on PIM
3: PIMKernel_1()
// PIMnet collective communication
4: PIMnet_ReduceScatter(size,scope)

5: PIMKernel_2()5: PIMKernel_2()

// Execute kernel on PIM
3: PIMKernel_1()

Fig. 5: High-level pseudo-code of (a) baseline collective communication for PIM, and (b) proposed PIMnet, (c) PIM instructions
that are offloaded for collective communication, and (d) the execution flow of PIMnet communication across multiple banks.

C. PIMnet Software/Interface

An overview of the collective communication in the baseline
PIM systems is shown in Figure 5(a) which illustrates a
pseudo-code that is executed across the host and the PIM. Re-
cent work has proposed alternative collective communications,
including SimplePIM [16], a software framework to support
PIM programming and provide communication primitives, and
PID-Comm [67] which optimizes host overhead for collective
communication. However, the high-level behavior shown in
Figure 5(a) is valid as the collective communication (e.g.,
Host_ReduceScatter()) is executed on the host while
the PIM kernel is offloaded to the PIM. Once the PIM kernel
is launched (and executed), collective communication (i.e.,
Reduce-Scatter) is executed on the host. In the proposed
PIMnet, changes to the pseudo-code are shown in Figure 5(b).
The PIM kernel code remains the same but the PIMnet API
is called for collective communication. The key difference
is that the collective communication results in a sequence
of instructions that is also offloaded to the PIM, similar to
the PIM kernel code itself. 4 In the example, the arguments
for PIMnet_ReduceScatter() include size which is
the number of elements that need to be communicated, and
scope which defines how many banks (or DPUs) are partic-
ipating in the collective communication.

The corresponding PIM code for the collective commu-
nication is shown in Figure 5(c). The PIM assembly in-
structions consist of multiple phases including POLL phase
which provides synchronization between the DPUs before the
execution of the collective communication and RS (Reduce-
Scatter) which iterates across the data from the WRAM to
perform the local reduction and move data using the PIMnet.
WAIT phase is used to ensure access to the shared inter-
chip (or inter-rank) channels is properly scheduled to avoid
contention between the banks on the same DRAM chip. The
execution flow of the collective communication on the PIM
is shown in Figure 5(d). During the POLL phase, each PIM
bank sends the READY signal to the control interface unit
that is shared by all banks on the same chip. The control
interface aggregates the READY signals and if the scope of
the communication is beyond a single DRAM chip, READY
signal is sent to the inter-chip switch (and then, to the inter-

4The behavior is similar to GPUs where collective communication kernels
are launched by the host and executed on the GPU.

rank switch if the scope consists of multiple ranks.) Once the
READY signals are all aggregated, START signal is sent back
to the appropriate banks such that the PIM banks can begin
their collective communication.

V. PIMNET MICROARCHITECTURE

In this section, we describe the details of the PIMnet mi-
croarchitecture and the direct PIM-to-PIM interconnect across
the memory packaging hierarchy, including inter-bank, inter-
chip, and inter-rank.

A. Inter-Bank Network

A detailed block diagram of PIMnet architecture is shown
in Figure 6. The main microarchitectural change for the inter-
bank interconnect (Figure 6(a)) is the PIMnet stop or a “router”
that is added to interconnect the PIM banks together. Since
all communication is “scheduled” to avoid any contention,
no input buffers or arbitration (or hardware flow control) is
necessary within the PIMnet stop. Hardware routing is also not
necessary since the packets or data movement are scheduled
or “orchestrated,” similar to software-scheduled network [8].
With the simplified architecture, PIMnet becomes a deter-
ministic interconnect architecture as the latency between a
source and a destination is fixed as there is no source of non-
determinism, including queuing or arbitration. However, PIM-
net introduces two requirements to ensure the communication
is done deterministically – the launch of communication needs
to be synchronized and the “scheduling” of the communication
is needed to ensure there is no contention for communication
resources. As described earlier in Section IV-C, READY signal
is leveraged for synchronization. Based on the type of collec-
tive communication, the scheduling is done differently. For
example, for AllReduce, hierarchical Ring-based AllReduce
is used while for All-to-all communication, the scheduling is
done based on ring algorithm in inter-bank communication
and permuted injection pattern for inter-chip and inter-rank
communication to avoid any contention in inter-chip switch
or on the multi-drop memory bus.

The changes to the datapath of the inter-bank network is also
shown in Figure 6(a). Additional datapath is added between
the WRAM and PIMnet stop (for inter-bank communication)
and from the WRAM to the DDR interface for inter-chip/rank
communication as the data for communication is provided
from the WRAM. The added datapath is only utilized when

(c) inter-rank

(b) inter-chip

(a) inter-bank

DRAM Rank 0DRAM Chip 0

Fig. 6: A detailed block diagram of PIMnet architecture across multi-tier interconnect consisting of (a) inter-bank, (b) inter-chip,
and (c) inter-rank networks. The red components highlight the new components introduced with PIMnet.

Bank 0 Bank 1 Bank 2 Bank 3

Bank 4 Bank 5 Bank 6 Bank 7

64

64

PIMnet dedicated wires
PIMnet channels shared with I/O bus

Bank group 0 I/O gating Bank group 1 I/O gating

Bank group 2 I/O gating Bank group 3 I/O gating

(c)(a)

(b)
Global I/O gating

Fig. 7: (a) DRAM chip diagram showing hierarchical, bank
I/O bus with the PIMnet topology connectivity shown in red,
(b) conventional DDR I/O bus (DQ) interface, and (c) proposed
PIMnet I/O that splits the I/O bus into multiple channels.

PIMnet communication is enabled (i.e., PIMnet_en is as-
serted). The physical connectivity of the inter-bank is a ring
topology in our PIMnet implementation. To minimize the
impact on wire routing resources which are limited to 3 metal
layers [77], [82], we leverage the existing I/O bus in modern
DDR DRAM chips [1], [2], [4]. A block diagram of the
internal, hierarchical DRAM I/O bus structure is shown in Fig-
ure 7(a) with the logical connectivity of the PIMnet topology
overlaid on top. The DDR I/O bus used for normal memory
access can be shared for inter-bank (PIMnet) communication
since communication does not overlap with memory accesses
or host-to-memory communication. We assume a baseline I/O
bus of 64 bits [62] and the I/O bus is hierarchical with two
banks or a bank group sharing one set of I/O bus and the
bank group sharing a global I/O bus. The bank group I/O bus,
commonly organized as a 64-bit bidirectional bus (Figure 7(b))
is partitioned into four 16-bit unidirectional channels for the
PIMnet ring connectivity (Figure 7(c)) – to provide the four
channels for In/Out from the East/West ports.

B. Inter-Chip Network

Inter-chip communication of PIMnet occurs through the
existing DRAM pins (i.e. DQ pins). Since there are 8 DQ

pins on a DDR4 DRAM chip, we partition them into two
groups for PIMnet – 4 pins to send data to the buffer chip
and 4 pins to receive data from the buffer chip. For normal
memory operations, the DQ pins are used as a bidirectional bus,
but for PIMnet, the bus is partitioned into two unidirectional
channels. Similar to inter-bank channels, sharing of the DQ
pins is possible since inter-chip communication does not
overlap with any host-to-memory communication. We also
assume a DRAM with a memory buffer chip in the middle
of the DIMM [5] (Figure 6(b)) – thus, DQ pins are routed to
the memory buffer chip before being driven off the DIMM
through the memory channel bus. For PIMnet, the DQ pins
routed to the memory buffer chip are connected to an 8×8
inter-chip crossbar switch that provides connectivity between
the PIM chips on the same rank. In addition to the crossbar, a
switch control unit is necessary to manage the communication
between the PIM chips and the synchronization. The READY
signals from each chip are collected and when all chips are
ready, the START signal is sent to all DRAM chips to begin
inter-chip communication.

Unlike conventional crossbar [23] that has hardware ar-
bitration, the inter-chip crossbar is not hardware-controlled
but managed or scheduled before PIM execution to avoid
contention. When inter-chip communication is needed, the host
sends control information to the switch control unit during
PIM kernel launch. The control information includes the traffic
pattern (e.g., communication type and scope) and message
size. The switch control unit includes memory-mapped regis-
ters that contain switch configuration information for PIMnet
communication between the chips. An example of inter-chip
switch configuration is shown in Figure 8 for a 4×4 inter-chip
switch with 4 DRAM chips for the All-to-all communication.
To enable connectivity between all chips during inter-chip
communication, 3 steps (or N − 1 steps) are needed where
N is the number of chips that are participating in the All-to-
all communication.

C. Inter-Rank Network

The inter-rank interconnect (Figure 6(c)) shares a multi-
drop DDR bus that exists in modern DRAM between the
ranks; thus, building a “network” on top of a bus becomes a

Algorithm 1 AllReduce scheduling & addressing algorithm

NB , NC , NR ←Number of banks/chips/ranks
IB , IC , IR ←Bank/chip/rank ID
D ←Data size
AddrB ← Base address of communication
TRSB

, TAGB
←Inter-bank ReduceScatter/AllGather time

TRSC
, TAGC

←Inter-chip ReduceScatter/AllGather time
TRSR

, TAGR
←Inter-rank ReduceScatter/AllGather time

procedure Schedule AllReduce(domain, phase)
if (domain == bank) then

if (phase == RS) then
offset = 0
Addrs = start address = AddrB + (D

NB
× IB)

else if (phase == AG) then
offset = TRSB

+TRSC
+TRSR

+TAGR
+TAGC

Addrs = AddrB+(D
NB
×((IB+NB−1)%NB))

else if (domain == chip) then
if (phase == RS) then

...
else if (phase == AG) then

...
else if (domain == rank) then

...
return offset, start address

t = 0 t = 1 t = 2

Chip 0

Chip 1

Chip 2

Chip 3

Chip 0

Chip 1

Chip 2

Chip 3

Chip 0

Chip 1

Chip 2

Chip 3

Chip 0

Chip 1

Chip 2

Chip 3

Chip 0

Chip 1

Chip 2

Chip 3

Chip 0

Chip 1

Chip 2

Chip 3

Fig. 8: An example configuration of 4×4 inter-chip switch for
All-to-all communication across three time-steps.

challenge without physically modifying the bus. For PIMnet,
we also leverage the DDR bus as a “broadcast” bus. However,
since the source and destination are pre-determined based on
the traffic pattern in PIMnet, once the source rank (DIMM)
injects a packet, only the destination rank will receive the
packet without any support from the host. By leveraging a bus,
the communication is not necessarily as efficient as a point-
to-point link since multiple communications cannot occur si-
multaneously on a bus. However, by avoiding communication
through the host which utilizes the bus twice (once to reach
the host and once to send data back to the PIM nodes), there is
still approximately 2× improvement in bandwidth by enabling
direct communication between the ranks (or DIMMs). Similar
to inter-chip switch, inter-rank switches also has their own
memory-mapped control registers that can be accessed by the
host CPU and used to configure the switch.

D. Address Generation/Traffic Scheduling

Since PIM interconnect does not involve the host during
communication, each PIM bank needs the memory address

MRAM WRAM

N0

MRAM WRAM

N1

MRAM WRAM

N2

MRAM WRAM

N3

Addrs
Addrs

Addrs

Addr𝑠𝑠 Addrr
Addrr

Addrr

Addrr

(a)

MRAM WRAM

N0

MRAM WRAM

N1

MRAM WRAM

N2

MRAM WRAM

N3

Addr1
Addr2
Addr3

(b)

Fig. 9: High-level block diagram that illustrates the addresses
that need to be generated for (a) AllReduce (Reduce-Scatter)
and (b) All-to-all collective communication. The data for col-
lective communication for PIMnet needs to be accessed from
the local scratchpad memory. For simplicity, only addresses
for node N0 is shown in All-to-all communication.

of the data that is involved in the collective communica-
tions. Similar to GPU collective communication libraries (e.g.,
NCCL [3]), PIMnet collective communications occur across
multiple “steps” and the number of steps depends on the (1)
collective communication pattern, (2) number of PIM banks,
and (3) PIM interconnect topology. Since these parameters
are known prior to PIM execution, all addresses used during
communication can be produced by the CPU during com-
pilation. The address necessary depends on the collective
communication and the number of banks participating in the
communication and differs for each bank (or PIM node). For
example, for Reduce-Scatter within a single DRAM chip, the
address necessary for node Ni includes the start (read) address
for data to be sent to node Ni+1 (Addrs) while another address
is necessary to determine the data that needs to be combined
with the data received from Ni−1 (Addrr) as shown in Fig-
ure 9(a). In our PIMnet implementation, the local scratchpad
(i.e., WRAM) is used which contains a copy of the data that
is located in the main memory (i.e., MRAM). For hierarchical
AllReduce (or Reduce-Scatter) when the scope extends beyond
a single chip, additional memory addresses are needed for
the communication of data across the different hierarchies,
based on the collective communication algorithm. For All-
to-all communication, to minimize the memory requirement,
PIMnet implements a pair-wise communication such that data
can effectively be “swapped” between the pair of nodes and
the data do not need to be stored in an intermediate location.
For example, as shown earlier in Figure 8, the configuration for
All-to-all for each step is based on pair-wise communication
– e.g., if Ni is sending data to Nj , then, Nj also sends data to
Ni. In Figure 9(b), an example of the addresses that need to be
generated for All-to-all communication is shown for N0. The

0
1
2
3
4
5
6
7
8
9
10

0%

20%

40%

60%

80%

100%

B S D P B S D P B S D P B S D P B S D P B S ND P B S D P B S D P B S D P B S D P B S D P B S D P B S D P B S D P B S D P B S D P B S D P B S D P B S D P B S D P B S D P B S ND P

256 512 1024 1024-64 2048-
128

C32-R8 C4-R64 C1-
R256

RM1 RM2 RM3 rtn ldr ash pfm del cmb pks

BFS CC MLP NTT GEMV EMB_Synth EMB_Prod SpMV Join

Sp
ee

du
p

N
or

m
al

ize
d

Ex
ec

ut
io

n
Ti

m
e

Kernel AllReduce Reduce-Scatter All-to-all Speedup
11.79

Fig. 10: Performance comparison and execution time breakdown of real-world applications. (B: Baseline PIM, S: Ideal software,
N: NDPBridge, D: DIMM-Link, P: PIMnet.) Input graphs of SpMV are from SparseP [31].

Communication
pattern

PIMnet implementation

Reduce-Scatter Ring(inter-bank)→
Ring(inter-chip)→Broadcast(inter-rank)

AllGather Broadcast(inter-rank)→
Ring(inter-chip)→Ring(inter-bank)

AllReduce Ring(inter-bank)→ Ring(inter-chip)→Broadcast(inter-
rank)→Ring(inter-chip)→Ring(inter-bank)

All-to-all Ring(inter-bank)→
Permutation(inter-chip)→Unicast(inter-rank)

Broadcast Ring(inter-chip)→
Broadcast(inter-rank)→Ring(inter-bank)

TABLE V: Collective communication primitives and their
implementation on PIMnet.

address that needs to be generated is proportional to N or the
number of nodes participating in the All-to-all communication.
For example, Addr1 corresponds to the send address for data
to N1 from N0 while Addr2 corresponds to data that will be
sent to N2 etc.

In addition to the local memory address, the latency (or
timing) information needs to be known ahead of time to
ensure deterministic data movement. Algorithm 1 provides
a summary of the algorithm for calculating the address and
timing information for each PIM bank during an AllReduce
communication. The address is used to determine the local
memory address while the timing information is used to
determine when the collective communication phase should
begin. The exact value of these two parameters depends on
the phase of the collective communication (e.g., Reduce-
Scatter (RS) and All-Gather (AG) for AllReduce) as well as
the hierarchy (e.g., bank, chip, rank) and latency parameters,
including latency to other bank/chip/ranks. Timing offset value
is necessary to determine when communication can begin –
e.g., for RS, communication can begin when synchronization
completes but for AG, communication needs to wait until
the previous RS phase completes. Address generation and
traffic scheduling of All-to-all is needed, similar to AllReduce
except more communication steps are needed for scheduling
of inter-chip (and rank) permutation. From the programmer’s
perspective, the detailed address and timing calculation pro-
cedure during compilation does not need to be exposed to
the programmer and only providing high-level library function
(e.g. PIMnet AllReduce() or PIMnet Alltoall()) is sufficient to
enable programmers to utilize PIMnet functionalities.

E. Routing

Given a topology, the routing algorithm determines the
path taken by a packet and is an important aspect of any
interconnection network [23]. However, since communication
is scheduled in PIMnet with a known physical topology and
a pre-determined communication algorithm (or the logical
topology [18]), no hardware-supported routing is needed as the
routing or movement of data is based on the “logical” topology
of the collective communication. Implementation of different
collective communication for PIMnet is summarized in Ta-
ble V. For Reduce-Scatter, the logical ring communication al-
gorithm is used for the inter-bank and the inter-chip hierarchy
while “broadcast” is used to reduce across the different ranks.
Since the PIM banks within the same DRAM chip perform
ring-based communication, each PIM bank only communicates
with its adjacent bank. For inter-chip communication, the
inter-chip switch is configured to form a ring for AllReduce
and Reduce-Scatter, or a different permutation of source-
destination connection is established across each time step
for All-to-all communication (Figure 8). Similarly, the inter-
rank switch accepts and rearranges data from remote ranks
based on static schedule defined by the communication pattern.
Therefore, once synchronization occurs, no congestion or
contention within the network occurs. In this work, we focused
mostly on two commonly used collective communications
including AllReduce (which consists of Reduce-Scatter and
AllGather) and All-to-all for PIMnet. However, PIMnet can be
extended to support other collective communications – e.g., for
collectives with N -to-1 communication (e.g., Reduce, Gather),
a single DPU can be used to enable such communication.

VI. EVALUATION

A. Methodology

A detailed processing-in-memory (PIM) simulator [43],
validated against UPMEM PIM hardware, was used in our
evaluation of PIMnet. The simulator was modified to model
PIMnet in our evaluation and the PIM system configuration is
summarized in Table VI. Both synthetic collective communi-
cation and real-world workloads were used in our evaluation.
Description of the workloads are summarized in Table VII,
including the workload inputs as well as the type of collective
communication used in the workloads. Our evaluations also
include two kernels that are commonly found in emerging

Configurations
Host CPU 16 Cores @ 4GHz,32KB L1

I/D,256KB L2,8MB L3
PIM Core 350MHz,24KB IRAM,64KB WRAM
Memory System DDR4-2400, 4 ranks/channel
Host-PIM bandwidth 4.74GB/s (PIM→CPU),

6.68GB/s (CPU→PIM),
16.88GB/s (CPU→PIM

broadcast) [39]
Buffer chip-PIM bandwidth 19.2GB/s ([89])

TABLE VI: System configuration for PIMnet evaluation.

Workload Description Comm. Input/Config
Embedding
table lookup
(EMB) [65]

Table lookup in Deep
Learning

Recommendation Model
RS Pooling size 8,

Batch size 256

Number
Theoretic
Transform
(NTT) [88]

Key operation in
Homomorphic

Encryption (HE)
A2A N = 216

Matrix-vector
multiplication
(GEMV) [39]

Common operation in
linear algebra and
neural networks

RS 1024 × 64,
2048 × 128

Multi-layer
perception
(MLP) [39]

Fully connected layers
used in neural networks AR

256 × 256,
512 × 512,

1024 × 1024
Sparse

matrix-vector
Multiplication
(SpMV) [31]

GEMV operation using
sparse weight matrix RS

DBCOO
partitioning, 32

vertical
partitions

Breadth-first
search

(BFS) [39]

Graph traverse
algorithm from a single

start vertex
AR log-gowalla

Connected
components
(CC) [39]

Find maximal subsets of
a graph where there is a

path between any two
vertices within this set

AR log-gowalla

Hash join
(Join) [61]

Join operation used in
database applications A2A 64M tuples

TABLE VII: Description of real-world workloads used in the
evaluation. RS: Reduce-Scatter, AR: AllReduce, A2A: All-to-
all collective communication patterns.

workloads – homomorphic encryption (HE) and deep-learning
recommendation models (DLRM). For HE, we evaluate the
potential benefits of PIMnet for NTT (Number Theoretic
Transform) [88] that is widely used and requires All-to-all
communication between the nodes. In addition, embedding
tables are widely used in DLRM for categorical data and
we evaluate both synthetic embedding tables (EMB_Synth)
and production-level (EMB_Prod) embedding tables (RM1,
RM2, RM3) [63]. Since we focused only on the embedding
lookup within DLRM, Reduce-scatter communication is nec-
essary. For the synthetic embedding tables, Cx-Ry embedding
table partitioning was used where x is the amount of column-
wise partitions and y is the amount of row-wise partitioning
of the embedding tables [49], assuming 4M entries, 64 em-
bedding dimension, and 8 of polling factor.

Performance is compared with a baseline PIM system with
host communication (B) and DIMM-Link [89] (D), which
proposed direct point-to-point connections between the dif-
ferent DRAM ranks. To ensure a fair comparison, we assume
the same “global” (or inter-rank) bandwidth between DIMM-
Link and PIMnet and ignore any overhead from the bridge

0
2
4
6
8
10

0%
20%
40%
60%
80%

100%

D P D P D P N D P D P D P D P D P N D P

1024 2048-128 C1-R256 RM2 rtn

BFS CC MLP NTT GEMV EMB_Synth EMB_Prod SpMV Join

Sp
ee

du
p

Ex
ec

ut
io

n
Ti

m
e

Br
ea

kd
ow

n

Inter-bank Inter-chip Inter-rank Mem Sync Speedup
10.46

Fig. 11: Breakdown of PIM communication time across eval-
uated workloads.

required in DIMM-Link. We also compare against an ideal
software collective communication implementation (S) and
NDPBridge [85] (N) for All-to-all collective communication
since it does not have support for AllReduce. To ensure
a fair comparison, we assume DIMM-Link [89] provides
bank-level PIM and assume each rank can perform collective
communication in parallel within its buffer chip for its local
data. Thus, the compute implementation across the different
alternative implementations is constant but the key difference
is how collective communication is performed. The initial
evaluations used 256 DPUs on a single memory channel and
additional scalability results are also presented.

Note that some of the workloads that we evaluate can be
implemented without collective communication (e.g., GEMV,
MLP). However, alternative implementations or parallelism
approaches lead to different trade-offs and some implementa-
tions do require collective communication. For example, data
parallelism can be used for GEMV/MLP which duplicates data
across the PIM nodes and does not require communication.
However, if tensor parallelism, similar to prior work [67],
[72], is used, collective communication is needed based on
the tensor partitioning.

B. Results

Application Performance Comparison: Figure 10 shows the
performance benefits of PIMnet on real-world applications. In
the baseline system, the performance of the graph workloads
(i.e, BFS, CC) is limited by the low communication bandwidth
through the host as AllReduce represents up to 83% of the
total execution time. However, PIMnet reduces the commu-
nication time to 5% and results in a 5.6× speedup for CC.
The larger amount of communication for CC (compared to
BFS) results in higher performance improvement. Compared
to the baseline, alternative implementations (S, D) provide
improvement compared to the baseline, but the benefits are
limited. MLP and NTT result in a relatively small speedup due
to a high proportion of compute time in the baseline PIM
system. The large compute time in these workloads is caused
by the low multiplication compute throughput of UPMEM
data processing units (DPUs) [25] as UPMEM does not
support native multiplication but is emulated through software.
GEMV involves the same amount of multiplication per input
as MLP; however, it results in higher speedup than MLP since
communication occurs after every layer. For EMB, RM3 results
in the biggest improvement from PIMnet because of a higher
amount of communication and a relatively low amount of

0.5

2

8

32

128

8 16 32 64 128 256

N
or

m
al

ize
d

Pe
rfo

rm
an

ce

DPU

Baseline DIMM-Link PIMnet

(a) AllReduce

0
2
4
6
8

10

8 16 32 64 128 256

N
or

m
al

ize
d

Pe
rfo

rm
an

ce

DPU

Baseline NDPBridge DIMM-Link PIMnet

(b) All-to-all

Fig. 12: Scalability comparison for (a) AllReduce and (b) All-
to-all communication, with results normalized to the baseline.

memory access. Retrieval and accumulation of partial sums
in 2D-partitioned SpMV, before output retrieval from the host,
is accelerated by performing Reduce-Scatter using PIMnet and
thus, 2.43× speedup compared to the host-managed commu-
nication. Join operation in bank-level PIM system incurs an
All-to-all communication across all PIM banks after global
partitioning of tuples [61] and PIMnet provides 36% improve
in performance with 64M tuples compared to the baseline.
PIM Communication Analysis: Figure 11 shows the break-
down of PIM communication for representative configuration
of each workload and PIM communication speedup of PIMnet
normalized to DIMM-Link (D) is shown, except for NTT
and Join which is normalized to NDPBridge (N). The PIM
communication time is broken up into the three PIM hierarchy
(inter-bank, inter-chip, and inter-rank) as well overhead for
PIMnet, including Sync and Mem. Sync refers to the syn-
chronization overhead while Mem refers to the memory transfer
overhead between the scratchpad memory (i.e., WRAM) and
DRAM bank (i.e., MRAM) when the communication amount
(or data) cannot fit within the scratchpad and has to be
copied from the DRAM memory bank. Prior work (D) do
not have support for direct inter-bank communication but with
PIMnet, not only is direct inter-bank communication possible
but for workloads with AllReduce or Reduce-Scatter, PIMnet
significantly improves performance by performing inter-bank
communication in parallel. For some of the workloads (CC,
EMB_Synth, SpMV, and Join), the overhead from Mem is
non-negligible but PIMnet is still able to provide communica-
tion performance improvement over DIMM-Link.
Collective Communication Scalability: Scalability analy-
sis of AllReduce and All-to-all collective communication is
shown in Figure 12 as the number of DPUs are increased
from 8 to 256 DPUs. For both analysis, we assume weak
scaling with a message size of 32KB and the results are
normalized to the performance of baseline PIM system for
each number of DPUs. For AllReduce, as discussed earlier,
local AllReduce can be done in parallel and provides more
speedup as the number of DPUs increases. The benefit of
All-to-All with PIMnet is limited as the number of DPUs
increases since All-to-All requires global communication of
all of its data. However, compared to NDPBridge, PIMnet
does not require communication to/from the host and thus,
provides better scalability. In addition, PIMnet provides some
performance improvement over DIMM-Link because of direct
data exchange between PIM banks without the overhead of

(a) AllReduce (b) All-to-all

Fig. 13: Execution time comparison of credit-based flow con-
trol and PIM-controlled traffic scheduling for (a) AllReduce
and (b) All-to-all collective communication.

0

5

10

15

0
0.2
0.4
0.6
0.8

1
1.2

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00 Sp

ee
du

p
ov

er
 D

IM
M

-L
in

k

N
or

m
al

ize
d

Ex
ec

ut
io

n
Ti

m
e

Inter-bank Channel Bandwidth (MB/s)

Inter-bank Inter-chip Inter-rank Speedup

(a) Inter-bank

0
5
10
15
20

0
0.2
0.4
0.6
0.8

1
1.2

20
0

(3
.2

)
40

0
(6

.4
)

60
0

(9
.6

)
80

0
(1

2.
8)

10
00

 (1
6.

0)
12

00
 (1

9.
2)

14
00

 (2
2.

4)
16

00
 (2

5.
6)

18
00

 (2
8.

8)
20

00
 (3

2)

Sp
ee

du
p

ov
er

 D
IM

M
-L

in
k

N
or

m
al

ize
d

Ex
ec

ut
io

n
Ti

m
e

Inter-chip(rank) Channel Bandwidth (MB/s)

Inter-bank Inter-chip Inter-rank Speedup

(b) Inter-chip/rank

Fig. 14: PIMnet’s AllReduce performance scalability over
different (a) inter-bank and (c) inter-chip/rank channel band-
width.

re-arranging data.
Comparison to Hardware-based Flow Control: PIMnet is
a PIM-controlled interconnect where data moves across the
interconnection network by exploiting the deterministic traffic
pattern. While this greatly simplifies the microarchitecture, it
can potentially have a performance impact because of the
synchronization overhead. To analyze the impact of static-
scheduled traffic management against a fully functional in-
terconnection network architecture, we implemented PIMnet’s
topology and static-scheduled traffic model in the cycle-
accurate NoC simulator Booksim 2.0 [46]. We then compared
the performance of collective communication. To measure the
performance overhead of statically scheduled communication,
we used execution time data of individual DPUs from the real
UPMEM system. This data was used as input to determine
when communication is ready for each node. In credit-based
flow control, each DPU starts communication right after
finishing its computation, and PIMnet starts communication
simultaneously after the last computation finishes across all of
the DPUs – thus, adding some synchronization overhead. As
the result in Figure 13 shows, for AllReduce, the performance
of both approaches is very similar within a 1% reduction
of the execution time of PIMnet. However, for All-to-all
communication, PIM-controlled scheduling (or PIMnet) shows
an 18.7% time reduction over credit-based flow control. Since
there are many independent point-to-point communications in
All-to-all, heavy contention occurs at the inter-chip crossbar,
and communication time actually increases.
Hardware Overhead of PIMnet: We implemented the PIM-
net in Verilog, including the PIMnet stop and the address

0
10
20
30
40
50

0%
20%
40%
60%
80%

100%

B D P B N D P B D P B N D P

MLP NTT MLP NTT

HBM-PIM GDDR6-AiM

Sp
ee

du
p

Ex
ec

ut
io

n
Ti

m
e

Br
ea

kd
ow

n
Kernel AllReduce All-to-all Speedup

Fig. 15: PIMnet performance benefit with different compute
implementations (HBM-PIM [59] and GDDR6-AiM [58]).

generator, and synthesized using OpenROAD [10] with 45nm
technology (Nangate45). The metal layers were restricted to 3
layers, similar to DRAM technology. The overhead introduced
was very negligible – an increase of only 0.09% area, com-
pared to a baseline PIM bank [25] while the power overhead
was estimated to be only 1.6%. Compared to a traditional NoC
router (e.g., a ring router), PIMnet stop results in over 60×
reduction in area. Inter-chip and inter-rank switch was also
synthesized and resulted in 0.013mm2 and 17mW of power
consumption overhead, which is negligible compared to buffer
chip resource [49]. One source of performance overhead for
PIMnet is the synchronization overhead (i.e., READY/START
signals) which is proportional to the propagation latency across
the PIMnet. In the PIMnet system that we consider, the worst-
case propagation latency across PIMnet is estimated to be
approximately 15 ns – or approximately 6 PIM (DPU) cycles).
Considering even a small message size (1KB) AllReduce
across 256 DPUs can take over 1000 cycles, the synchroniza-
tion overhead is relatively small.
Bandwidth Scaling Analysis of PIMnet: One important
factor in PIMnet performance is the interconnect bandwidth.
In Figure 14(a), the inter-bank PIMnet channel bandwidth is
varied from 0.1 to 1 GB/s. In this work we assumed inter-
bank bandwidth of 0.7 GB/s but even if the bandwidth is
reduced to 0.1 GB/s, PIMnet can still outperform DIMM-
Link by 3× because of the bandwidth parallelism that can be
exploited across the different DRAM chips. In Figure 14(b),
the inter-bank bandwidth is fixed at 0.7 GB/s and provides
the scalability analysis of inter-chip and inter-rank channel
bandwidth. Since PIMnet enables hierarchical AllReduce and
reduces the amount of global data communicated across the
different ranks, PIMnet is still able to outperform DIMM-Link
even with a smaller amount of global (inter-chip/inter-rank)
bandwidth.
Multi-channel Scaling Analysis: Figure 16 shows
EMB_Synth performance trend of different methods
with different number of PIM channels. Since the scope
of PIMnet is interconnecting PIM banks within the same
memory channel, data transfer across different memory
channels needs to go through the host CPU. However, PIMnet
can greatly reduce the transfer amount that goes to the host
CPU by performing channel-wise data reduction. Therefore,
the overhead of host communication is lower for PIMnet

0
5
10
15
20
25
30

0%
20%
40%
60%
80%

100%

B S D P B S D P B S D P B S D P

1CH 2CH 4CH 8CH

Sp
ee

du
p

N
or

m
al

ize
d

Ex
ec

ut
io

n
Ti

m
e

Kernel Reduce-Scatter Speedup

Fig. 16: Performance comparsion of embedding table lookup
with memory channel scaling.

A

B

Ba
nd

w
id

th

Time

(b)

Workload A Workload B

A
B

Time

(a)

Ba
nd

w
id

th

Workload A Workload B

Fig. 17: PIM bank allocation for multi-tenancy using spatial
mapping with (a) host-based communication, and (b) PIMnet.

as the number of channels increases – resulting in higher
speedup compared to the baseline system with more memory
channels.
Alternative PIM implementation: This work was based
on UPMEM PIM architecture because of its programmable
compute but other PIM architectures [58], [59] have different
compute characteristics (and throughput); however, the need
for inter-PIM communication also exists for other PIM archi-
tectures. One key difference of the other PIM, compared with
UPMEM, is the higher compute throughput (or FLOPS) pro-
vided by dedicated hardware logic, including HBM-PIM [59]
and GDDR6-AiM [58]. In Figure 15, we provide an analysis
of the potential benefit of PIMnet if the compute throughput
of PIM is increased to match that of alternative PIMs. For the
workloads, we selected the two most compute-intensive tasks
in our evaluations: MLP and NTT. The results show that PIM-
net has the potential to provide more speedup. For example,
the performance improvement from PIMnet on MLP was only
1.3× in Figure 10 but if we assume PIM logic with custom
multiply/accumulate units (i.e., GDDR6-AiM [58] PIM) that
provides 180× higher compute throughput than UPMEM [39],
the benefit of PIMnet increases to approximately 40×. The
next generation of DPUs from UPMEM [68] is described
to have support for native floating point operations, offering
more than several orders of magnitude higher FLOPS (5-
8TFLOPS/chip) compared to the current DPUs. As a result,
the benefits from PIMnet will likely be higher with future
DPUs from UPMEM.
Multi-Tenancy: Current PIM assumes a single workload or a
single user but it is possible future PIMs can have support for
multi-tenancy [50]. While PIMnet can support multi-tenancy
across the memory hierarchy, the key benefit of PIMnet is
the ability to provide bandwidth isolation across the different
tenants. For example, in the baseline system, spatial mapping

of multiple workloads is shown in Figure 17(a); however, the
bandwidth to/from the host need to be shared for PIM-to-
PIM communication and degrades performance. In compari-
son, with PIMnet (Figure 17(b)), the PIM-to-PIM collective
communication can be isolated and not only result in high
bandwidth but also exploits PIM bandwidth parallelism and
accelerate both workloads.

VII. RELATED WORK

There have been many prior work on accelerating differ-
ent workloads on the UPMEM PIM architecture, including
machine learning workloads [24], [34], [38], [60], transcen-
dental functions [44], sequence alignment [26], graph pattern
matching [13], homomorphic operations [35], sparse matrix-
vector multiplications [32], and join algorithms [61]. In addi-
tion, to accelerate data-intensive workloads that are memory-
intensive, different processing-in-memory architectures have
been proposed, including PIM architecture for recommenda-
tion systems and embedding tables [49], [56], [57], [71] as
well as fully homomorphic encryption (FHE) and various
kernels within FHE [36], [37], [66], [75], [90]. In this work,
we target similar workloads but unlike prior work, this work
explores potential benefits from introducing a domain-specific
(or PIM-specific) interconnection network to accelerate collec-
tive communication. Other work have also identified potential
limitations of PIM scalability caused by the PIM-to-PIM
communication overhead through the host CPU [16], [39], [47]
and software-based optimization of collective communications
have been proposed [67]. In comparison, this is one of the
first work to propose a dedicated (hardware) interconnect to
accelerate collective communication for PIM architectures.

To scale PIM architecture, different multi-PIM systems
have been proposed [70] including heterogeneous NPU-PIM
systems [41], [81]. The performance benefits of these systems
are often determined by the inter-PIM communication and
collective communication; however, the DRAM module-to-
module constraints are different from a PIM bank-to-bank
communication. To provide communication between DIMMs
without communicating through the host, different architec-
tures have been proposed including AIM [20] and DIMM-
Link [89] which have proposed external connector or a bridge
to interconnect the DIMMs together. ABC-DIMM [83] pro-
posed to re-use the memory bus to broadcast traffic and enable
DIMM-to-DIMM communication. NDPBridge [85] proposes
hardware “bridges” across the DRAM hierarchy to accelerate
message transfer between memory banks. In comparison, this
work addresses the challenge of collective communication in
PIM-to-PIM data movement and proposes a PIM-controlled
interconnect architecture.

There has been a significant amount of work done on dif-
ferent types of interconnection networks, including network-
on-chip [22], [23] to large-scale networks [53]. In addi-
tion, interconnection networks have been leveraged to enable
scalable near-memory or near-data processing architectures.
Memory channel network [11] proposes a practical near-
memory processing system where each near-memory proces-

sor is viewed as “node” that runs an OS. While no hardware
changes are necessary, it can introduce additional performance
overhead. Memory-centric network for CPUs [51] and CPU-
GPU systems [52] explore interconnect between the memory
modules and CPU/GPU as well as intra-module interconnect.
The memory-centric organization has been exploited for PIM
or NDP accelerations [9], [27], [29], [33], [76]. However,
the constraints of PIMnet (and PIM-to-PIM communication)
that we exploit present unique opportunities and challenges
compared to other types of interconnection networks. Active
routing [42] proposes computation within the network for near-
data processing; however, PIMnet does not require similar
type of “routing.” Modern PIM architectures [58] often have
broadcast bus structures where common data can be shared
between different banks for computation; as a result, different
approaches to accelerating broadcasting has been proposed
(e.g., ring-based broadcasting for Transformers [91]). PIMnet
presented in this work represents one possible implementation
and it remains to be seen how PIMnet can be optimized.

VIII. CONCLUSION

In this work, a domain-specific interconnection network for
PIM nodes, referred to as PIMnet, was proposed to enable ef-
ficient collective communication between PIM banks and pro-
vide scalable PIM architecture. PIMnet exploits the memory
packaging hierarchy to enable direct data movement for PIM-
to-PIM communication without sending data through the host.
In addition, PIMnet leverages communication characteristics
of collective communication to schedule communication and
create a PIM-controlled interconnection network architecture
to accelerate collective communication.

ACKNOWLEDGEMENT

We thank the anonymous reviewers for their comments
and feedback that helped to improve the paper and thank
Hyeonwoo Sung for his support in implementing PIMnet
in the simulator. This work was supported in part by
NSF CNS 2312275 and 2312276, NSF IUCRC Center for
Hardware and Embedded Systems Security and Trust, IITP-
RS202300228255, NRF-2023R1A2C200422912, and IITP-
RS202400402898. Additionally, we acknowledge the financial
assistance from grants RYC2021-031966-I and CNS2023-
144241 funded by MICIU/AEI/10.13039/501100011033
and the “European Union NextGenerationEU/PRTR”, and
project grant PID2020-112827GB-I00 funded by MICIU/AEI/
10.13039/501100011033.

REFERENCES

[1] “8gb c-die ddr4 sdram x16,” https://download.semiconductor.samsung.
com/resources/user-manual/x16%20only 8G C DDR4 Samsung
Spec Rev1.5 Apr.17.pdf.

[2] “Micron ddr4 sdram,” https://www.micron.com/-/media/client/global/
documents/products/datasheet/dram/ddr4/8gb ddr4 sdram.pdf.

[3] “NCCL documentation,” https://docs.nvidia.com/deeplearning/nccl/user-
guide/docs/index.html, accessed: 2023-04-28.

[4] “Sk hynix ddr4,” https://product.skhynix.com/products/dram/ddr/ddr4sd.
go.

[5] “Sk hynix ddr4 lrdimm chip datasheet,” https://product.skhynix.com/
products/dram/module/ddr4dm.go.

https://download.semiconductor.samsung.com/ resources/user-manual/x16%20only_8G_C_DDR4_Samsung_Spec_Rev1.5_Apr.17.pdf
https://download.semiconductor.samsung.com/ resources/user-manual/x16%20only_8G_C_DDR4_Samsung_Spec_Rev1.5_Apr.17.pdf
https://download.semiconductor.samsung.com/ resources/user-manual/x16%20only_8G_C_DDR4_Samsung_Spec_Rev1.5_Apr.17.pdf
https://www.micron.com/-/media/client/global /documents/products/datasheet/dram/ddr4/8gb_ddr4_sdram.pdf
https://www.micron.com/-/media/client/global /documents/products/datasheet/dram/ddr4/8gb_ddr4_sdram.pdf
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html
https://product.skhynix.com /products/dram/ddr/ddr4sd.go
https://product.skhynix.com /products/dram/ddr/ddr4sd.go
https://product.skhynix.com/products/ dram/module/ddr4dm.go
https://product.skhynix.com/products/ dram/module/ddr4dm.go

[6] “UPMEM documentation,” https://sdk.upmem.com/2021.3.0/.
[7] D. Abts and J. Kim, “The case for domain-specific networks,” in 2023

IEEE Symposium on High-Performance Interconnects (HOTI), 2023, pp.
49–52.

[8] D. Abts, G. Kimmell, A. Ling, J. Kim, M. Boyd, A. Bitar,
S. Parmar, I. Ahmed, R. DiCecco, D. Han, J. Thompson, M. Bye,
J. Hwang, J. Fowers, P. Lillian, A. Murthy, E. Mehtabuddin, C. Tekur,
T. Sohmers, K. Kang, S. Maresh, and J. Ross, “A software-defined
tensor streaming multiprocessor for large-scale machine learning,” in
Proceedings of the 49th Annual International Symposium on Computer
Architecture, ser. ISCA ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 567–580. [Online]. Available:
https://doi.org/10.1145/3470496.3527405

[9] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable
processing-in-memory accelerator for parallel graph processing,” in
2015 ACM/IEEE 42nd Annual International Symposium on Computer
Architecture (ISCA), 2015, pp. 105–117.

[10] T. Ajayi and D. Blaauw, “Openroad: Toward a self-driving, open-source
digital layout implementation tool chain,” in Proceedings of Government
Microcircuit Applications and Critical Technology Conference, 2019.

[11] M. Alian, S. W. Min, H. Asgharimoghaddam, A. Dhar, D. K. Wang,
T. Roewer, A. McPadden, O. O’Halloran, D. Chen, J. Xiong, D. Kim,
W.-m. Hwu, and N. S. Kim, “Application-transparent near-memory pro-
cessing architecture with memory channel network,” in 2018 51st Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2018, pp. 802–814.

[12] D. H. Bailey, “FFTs in external or hierarchical memory,” in Super-
computing ’89: Proceedings of the 1989 ACM/IEEE Conference on
Supercomputing, 1989, pp. 234–242.

[13] S. Cai, B. Tian, H. Zhang, and M. Gao, “Pimpam: Efficient graph
pattern matching on real processing-in-memory hardware,” Proc.
ACM Manag. Data, vol. 2, no. 3, May 2024. [Online]. Available:
https://doi.org/10.1145/3654964

[14] D. Cardwell and F. Song, “An extended roofline model with
communication-awareness for distributed-memory hpc systems,” in
Proceedings of the International Conference on High Performance
Computing in Asia-Pacific Region, ser. HPCAsia ’19. New York, NY,
USA: Association for Computing Machinery, 2019, p. 26–35. [Online].
Available: https://doi.org/10.1145/3293320.3293321

[15] E. Chan, M. Heimlich, A. Purkayastha, and R. van de Geijn, “Collective
communication: theory, practice, and experience,” Concurrency and
Computation: Practice and Experience, vol. 19, no. 13, pp. 1749–1783,
2007. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.
1002/cpe.1206

[16] J. Chen, J. Gomez-Luna, I. E. Hajj, Y. Guo, and O. Mutlu,
“Simplepim: A software framework for productive and efficient
processing-in-memory,” in 2023 32nd International Conference on
Parallel Architectures and Compilation Techniques (PACT). Los
Alamitos, CA, USA: IEEE Computer Society, oct 2023, pp. 99–
111. [Online]. Available: https://doi.ieeecomputersociety.org/10.1109/
PACT58117.2023.00017

[17] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption
for arithmetic of approximate numbers,” in International Conference on
the Theory and Application of Cryptology and Information Security.
Springer, 2017, pp. 409–437.

[18] S. Cho, H. Son, and J. Kim, “Logical/physical topology-aware collective
communication in deep learning training,” in 2023 IEEE International
Symposium on High-Performance Computer Architecture (HPCA), 2023,
pp. 56–68.

[19] J. Choquette, W. Gandhi, O. Giroux, N. Stam, and R. Krashinsky,
“Nvidia a100 tensor core gpu: Performance and innovation,” IEEE
Micro, vol. 41, no. 2, pp. 29–35, 2021.

[20] J. Cong, Z. Fang, M. Gill, F. Javadi, and G. Reinman, “Aim:
Accelerating computational genomics through scalable and noninvasive
accelerator-interposed memory,” in Proceedings of the International
Symposium on Memory Systems, ser. MEMSYS ’17. New York, NY,
USA: Association for Computing Machinery, 2017, p. 3–14. [Online].
Available: https://doi.org/10.1145/3132402.3132406

[21] A. Dakkak, C. Li, J. Xiong, I. Gelado, and W. Hwu, “Accelerating
reduction and scan using tensor core units,” in Proceedings of the ACM
International Conference on Supercomputing, 2019, pp. 46–57.

[22] W. J. Dally and B. Towles, “Route packets, not wires: On-chip
interconnection networks,” ser. DAC ’01. New York, NY, USA:

ACM, 2001, pp. 684–689. [Online]. Available: http://doi.acm.org/10.
1145/378239.379048

[23] W. Dally and B. Towles, “Principles and practices of interconnection
network,” 01 2004.

[24] P. Das, P. R. Sutradhar, M. Indovina, S. M. P. Dinakarrao, and
A. Ganguly, “Implementation and evaluation of deep neural networks in
commercially available processing in memory hardware,” in 2022 IEEE
35th International System-on-Chip Conference (SOCC), 2022, pp. 1–6.

[25] F. Devaux, “The true processing in memory accelerator,” in 2019
IEEE Hot Chips 31 Symposium (HCS), Cupertino, CA, USA,
August 18-20, 2019. IEEE, 2019, pp. 1–24. [Online]. Available:
https://doi.org/10.1109/HOTCHIPS.2019.8875680

[26] S. Diab, A. Nassereldine, M. Alser, J. Gómez Luna, O. Mutlu, and
I. El Hajj, “A framework for high-throughput sequence alignment using
real processing-in-memory systems,” Bioinformatics, vol. 39, no. 5, p.
btad155, 2023.

[27] M. Drumond, A. Daglis, N. Mirzadeh, D. Ustiugov, J. Picorel,
B. Falsafi, B. Grot, and D. Pnevmatikatos, “The mondrian data engine,”
SIGARCH Comput. Archit. News, vol. 45, no. 2, p. 639–651, jun 2017.
[Online]. Available: https://doi.org/10.1145/3140659.3080233

[28] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in 2011
38th Annual International Symposium on Computer Architecture (ISCA),
2011, pp. 365–376.

[29] M. Gao, G. Ayers, and C. Kozyrakis, “Practical near-data processing for
in-memory analytics frameworks,” in 2015 International Conference on
Parallel Architecture and Compilation (PACT), 2015, pp. 113–124.

[30] M. Gao, M. Coletti, R. B. Davidson, R. Prout, S. Abraham,
B. Hernández, and A. Sedova, “Proteome-scale deployment of protein
structure prediction workflows on the summit supercomputer,” in 2022
IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW). IEEE, 2022, pp. 206–215.

[31] C. Giannoula, I. Fernandez, J. Gómez-Luna, N. Koziris, G. Goumas,
and O. Mutlu, “Sparsep: Towards efficient sparse matrix vector multi-
plication on real processing-in-memory systems,” 2022.

[32] C. Giannoula, I. Fernandez, J. G. Luna, N. Koziris, G. Goumas,
and O. Mutlu, “Sparsep: Towards efficient sparse matrix vector
multiplication on real processing-in-memory architectures,” Proc. ACM
Meas. Anal. Comput. Syst., vol. 6, no. 1, Feb. 2022. [Online]. Available:
https://doi.org/10.1145/3508041

[33] C. Giannoula, N. Vijaykumar, N. Papadopoulou, V. Karakostas, I. Fer-
nandez, J. Gómez-Luna, L. Orosa, N. Koziris, G. Goumas, and O. Mutlu,
“Syncron: Efficient synchronization support for near-data-processing
architectures,” 2021.

[34] K. Gogineni, S. S. Dayapule, J. Gómez-Luna, K. Gogineni, P. Wei,
T. Lan, M. Sadrosadati, O. Mutlu, and G. Venkataramani, “Swiftrl:
Towards efficient reinforcement learning on real processing-in-memory
systems,” in 2024 IEEE International Symposium on Performance Anal-
ysis of Systems and Software (ISPASS), 2024, pp. 217–229.

[35] H. Gupta, M. Kabra, J. Gómez-Luna, K. Kanellopoulos, and O. Mutlu,
“Evaluating homomorphic operations on a real-world processing-in-
memory system,” in 2023 IEEE International Symposium on Workload
Characterization (IISWC), 2023, pp. 211–215.

[36] S. Gupta, R. Cammarota, and T. Šimunić, “Memfhe: End-to-end
computing with fully homomorphic encryption in memory,” ACM
Trans. Embed. Comput. Syst., vol. 23, no. 2, Mar. 2024. [Online].
Available: https://doi.org/10.1145/3569955

[37] S. Gupta and T. Š. Rosing, “Accelerating fully homomorphic encryption
with processing in memory,” in 2021 58th ACM/IEEE Design Automa-
tion Conference (DAC). IEEE, 2021, pp. 1335–1338.

[38] J. Gómez-Luna, Y. Guo, S. Brocard, J. Legriel, R. Cimadomo, G. F.
Oliveira, G. Singh, and O. Mutlu, “Evaluating machine learningwork-
loads on memory-centric computing systems,” in 2023 IEEE Interna-
tional Symposium on Performance Analysis of Systems and Software
(ISPASS), 2023, pp. 35–49.

[39] J. Gómez-Luna, I. E. Hajj, I. Fernandez, C. Giannoula, G. F. Oliveira,
and O. Mutlu, “Benchmarking a new paradigm: Experimental analysis
and characterization of a real processing-in-memory system,” IEEE
Access, vol. 10, pp. 52 565–52 608, 2022.

[40] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “Eie: Efficient inference engine on compressed deep neural
network,” in Proceedings of the 43rd International Symposium on
Computer Architecture, ser. ISCA ’16. IEEE Press, 2016, p. 243–254.
[Online]. Available: https://doi.org/10.1109/ISCA.2016.30

https://sdk.upmem.com/2021.3.0/
https://doi.org/10.1145/3470496.3527405
https://doi.org/10.1145/3654964
https://doi.org/10.1145/3293320.3293321
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.1206
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.1206
https://doi.ieeecomputersociety.org/10.1109/PACT58117.2023.00017
https://doi.ieeecomputersociety.org/10.1109/PACT58117.2023.00017
https://doi.org/10.1145/3132402.3132406
http://doi.acm.org/10.1145/378239.379048
http://doi.acm.org/10.1145/378239.379048
https://doi.org/10.1109/HOTCHIPS.2019.8875680
https://doi.org/10.1145/3140659.3080233
https://doi.org/10.1145/3508041
https://doi.org/10.1145/3569955
https://doi.org/10.1109/ISCA.2016.30

[41] G. Heo, S. Lee, J. Cho, H. Choi, S. Lee, H. Ham, G. Kim, D. Mahajan,
and J. Park, “Neupims: Npu-pim heterogeneous acceleration for
batched llm inferencing,” in Proceedings of the 29th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 3, ser. ASPLOS ’24. New York, NY, USA:
Association for Computing Machinery, 2024, p. 722–737. [Online].
Available: https://doi.org/10.1145/3620666.3651380

[42] J. Huang, R. Reddy Puli, P. Majumder, S. Kim, R. Boyapati, K. H.
Yum, and E. J. Kim, “Active-routing: Compute on the way for near-
data processing,” in 2019 IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2019, pp. 674–686.

[43] B. Hyun, T. Kim, D. Lee, and M. Rhu, “ Pathfinding Future PIM
Architectures by Demystifying a Commercial PIM Technology ,” in
2024 IEEE International Symposium on High-Performance Computer
Architecture (HPCA), Mar. 2024, pp. 263–279. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/HPCA57654.2024.00029

[44] M. Item, G. F. Oliveira, J. Gomez-Luna, M. Sadrosadati, Y. Guo,
and O. Mutlu, “Transpimlib: Efficient transcendental functions for
processing-in-memory systems,” in 2023 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS). Los
Alamitos, CA, USA: IEEE Computer Society, apr 2023, pp. 235–
247. [Online]. Available: https://doi.ieeecomputersociety.org/10.1109/
ISPASS57527.2023.00031

[45] Z. Jia, M. Maggioni, B. Staiger, and D. P. Scarpazza, “Dissecting the
nvidia volta gpu architecture via microbenchmarking,” arXiv preprint
arXiv:1804.06826, 2018.

[46] N. Jiang, D. U. Becker, G. Michelogiannakis, J. Balfour, B. Towles, D. E.
Shaw, J. Kim, and W. J. Dally, “A detailed and flexible cycle-accurate
network-on-chip simulator,” in 2013 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), 2013, pp. 86–
96.

[47] G. Jonatan, H. Cho, H. Son, X. Wu, N. Livesay, E. Mora, K. Shivdikar,
J. L. Abellán, A. Joshi, D. Kaeli, and J. Kim, “Scalability limitations
of processing-in-memory using real system evaluations,” Proc. ACM
Meas. Anal. Comput. Syst., vol. 8, no. 1, Feb. 2024. [Online]. Available:
https://doi.org/10.1145/3639046

[48] A. B. Kahng, B. Lin, and S. Nath, “Orion3.0: A comprehensive noc
router estimation tool,” IEEE Embedded Systems Letters, vol. 7, no. 2,
pp. 41–45, 2015.

[49] L. Ke, U. Gupta, B. Y. Cho, D. Brooks, V. Chandra, U. Diril,
A. Firoozshahian, K. Hazelwood, B. Jia, H.-H. S. Lee, M. Li,
B. Maher, D. Mudigere, M. Naumov, M. Schatz, M. Smelyanskiy,
X. Wang, B. Reagen, C.-J. Wu, M. Hempstead, and X. Zhang,
“Recnmp: Accelerating personalized recommendation with near-
memory processing,” in Proceedings of the ACM/IEEE 47th Annual
International Symposium on Computer Architecture, ser. ISCA
’20. IEEE Press, 2020, p. 790–803. [Online]. Available: https:
//doi.org/10.1109/ISCA45697.2020.00070

[50] D. Kim, T. Kim, I. Hwang, T. Park, H. Kim, Y. Kim, and
Y. Park, “Virtual pim: Resource-aware dynamic dpu allocation and
workload scheduling framework for multi-dpu pim architecture,” in
2023 32nd International Conference on Parallel Architectures and
Compilation Techniques (PACT). Los Alamitos, CA, USA: IEEE
Computer Society, oct 2023, pp. 112–123. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/PACT58117.2023.00018

[51] G. Kim, J. Kim, J. H. Ahn, and J. Kim, “Memory-centric system
interconnect design with hybrid memory cubes,” in Proceedings of the
22nd International Conference on Parallel Architectures and Compila-
tion Techniques, 2013, pp. 145–155.

[52] G. Kim, M. Lee, J. Jeong, and J. Kim, “Multi-gpu system design
with memory networks,” in 2014 47th Annual IEEE/ACM International
Symposium on Microarchitecture, 2014, pp. 484–495.

[53] J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-driven, highly-
scalable dragonfly topology,” in 2008 International Symposium on
Computer Architecture, 2008, pp. 77–88.

[54] S. Kim, J. Kim, M. J. Kim, W. Jung, J. Kim, M. Rhu, and J. H. Ahn,
“Bts: An accelerator for bootstrappable fully homomorphic encryption,”
in Proceedings of the 49th Annual International Symposium on Com-
puter Architecture, 2022, pp. 711–725.

[55] Y.-C. Kwon, J. Lee, Suk Han fhand Lee, S.-H. Kwon, J. M. Ryu, J.-P.
Son, O. Seongil, H.-S. Yu, H. Lee, S. Y. Kim, Y. Cho, J. G. Kim, J. Choi,
H.-S. Shin, J. Kim, B. Phuah, H. Kim, M. J. Song, A. Choi, D. Kim,
S. Kim, E.-B. Kim, D. Wang, S. Kang, Y. Ro, S. Seo, J. Song, J. Youn,
K. Sohn, and N. S. Kim, “25.4 a 20nm 6gb function-in-memory dram,

based on hbm2 with a 1.2tflops programmable computing unit using
bank-level parallelism, for machine learning applications,” in 2021 IEEE
International Solid- State Circuits Conference (ISSCC), vol. 64, 2021,
pp. 350–352.

[56] Y. Kwon, Y. Lee, and M. Rhu, “Tensordimm: A practical near-memory
processing architecture for embeddings and tensor operations in deep
learning,” in Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO ’52. New York, NY,
USA: Association for Computing Machinery, 2019, p. 740–753.
[Online]. Available: https://doi.org/10.1145/3352460.3358284

[57] Y. Kwon, Y. Lee, and M. Rhu, “Tensor casting: Co-designing algorithm-
architecture for personalized recommendation training,” in 2021 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA), 2021, pp. 235–248.

[58] S. Lee, K. Kim, S. Oh, J. Park, G. Hong, D. Ka, K. Hwang, J. Park,
K. Kang, J. Kim, J. Jeon, N. Kim, Y. Kwon, K. Vladimir, W. Shin,
J. Won, M. Lee, H. Joo, H. Choi, J. Lee, D. Ko, Y. Jun, K. Cho, I. Kim,
C. Song, C. Jeong, D. Kwon, J. Jang, I. Park, J. Chun, and J. Cho,
“A 1ynm 1.25v 8gb, 16gb/s/pin gddr6-based accelerator-in-memory
supporting 1tflops mac operation and various activation functions for
deep-learning applications,” in 2022 IEEE International Solid- State
Circuits Conference (ISSCC), vol. 65, 2022, pp. 1–3.

[59] S. Lee, S.-h. Kang, J. Lee, H. Kim, E. Lee, S. Seo, H. Yoon, S. Lee,
K. Lim, H. Shin, J. Kim, O. Seongil, A. Iyer, D. Wang, K. Sohn, and
N. S. Kim, “Hardware architecture and software stack for pim based on
commercial dram technology : Industrial product,” in 2021 ACM/IEEE
48th Annual International Symposium on Computer Architecture (ISCA),
2021, pp. 43–56.

[60] C. Li, Z. Zhou, Y. Wang, F. Yang, T. Cao, M. Yang, Y. Liang,
and G. Sun, “Pim-dl: Expanding the applicability of commodity
dram-pims for deep learning via algorithm-system co-optimization,”
in Proceedings of the 29th ACM International Conference on
Architectural Support for Programming Languages and Operating
Systems, Volume 2, ser. ASPLOS ’24. New York, NY, USA:
Association for Computing Machinery, 2024, p. 879–896. [Online].
Available: https://doi.org/10.1145/3620665.3640376

[61] C. Lim, S. Lee, J. Choi, J. Lee, S. Park, H. Kim, J. Lee, and Y. Kim,
“Design and analysis of a processing-in-dimm join algorithm: A case
study with upmem dimms,” Proc. ACM Manag. Data, vol. 1, no. 2,
Jun. 2023. [Online]. Available: https://doi.org/10.1145/3589258

[62] S. Lym, H. Ha, Y. Kwon, C.-k. Chang, J. Kim, and M. Erez, “Eruca:
Efficient dram resource utilization and resource conflict avoidance for
memory system parallelism,” in 2018 IEEE International Symposium on
High Performance Computer Architecture (HPCA), 2018, pp. 670–682.

[63] D. Mudigere, Y. Hao, J. Huang, Z. Jia, A. Tulloch, S. Sridharan, X. Liu,
M. Ozdal, J. Nie, J. Park, L. Luo, J. A. Yang, L. Gao, D. Ivchenko,
A. Basant, Y. Hu, J. Yang, E. K. Ardestani, X. Wang, R. Komuravelli,
C.-H. Chu, S. Yilmaz, H. Li, J. Qian, Z. Feng, Y. Ma, J. Yang,
E. Wen, H. Li, L. Yang, C. Sun, W. Zhao, D. Melts, K. Dhulipala,
K. Kishore, T. Graf, A. Eisenman, K. K. Matam, A. Gangidi, G. J.
Chen, M. Krishnan, A. Nayak, K. Nair, B. Muthiah, M. khorashadi,
P. Bhattacharya, P. Lapukhov, M. Naumov, A. Mathews, L. Qiao,
M. Smelyanskiy, B. Jia, and V. Rao, “Software-hardware co-design for
fast and scalable training of deep learning recommendation models,” in
Proceedings of the 49th Annual International Symposium on Computer
Architecture, ser. ISCA ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 993–1011. [Online]. Available:
https://doi.org/10.1145/3470496.3533727

[64] O. Mutlu, S. Ghose, J. Gómez-Luna, and R. Ausavarungnirun, “Pro-
cessing data where it makes sense: Enabling in-memory computation,”
Microprocessors and Microsystems, vol. 67, pp. 28–41, 2019.

[65] M. Naumov, D. Mudigere, H.-J. M. Shi, J. Huang, N. Sundaraman,
J. Park, X. Wang, U. Gupta, C.-J. Wu, A. G. Azzolini, D. Dzhulgakov,
A. Mallevich, I. Cherniavskii, Y. Lu, R. Krishnamoorthi, A. Yu,
V. Kondratenko, S. Pereira, X. Chen, W. Chen, V. Rao, B. Jia,
L. Xiong, and M. Smelyanskiy, “Deep learning recommendation model
for personalization and recommendation systems,” 2019. [Online].
Available: https://arxiv.org/abs/1906.00091

[66] H. Nejatollahi, S. Gupta, M. Imani, T. S. Rosing, R. Cammarota,
and N. Dutt, “Cryptopim: In-memory acceleration for lattice-based
cryptographic hardware,” in 2020 57th ACM/IEEE Design Automation
Conference (DAC). IEEE, 2020, pp. 1–6.

[67] S. U. Noh, J. Hong, C. Lim, S. Park, J. Kim, H. Kim, Y. Kim, and J. Lee,
“Pid-comm: A fast and flexible collective communication framework

https://doi.org/10.1145/3620666.3651380
https://doi.ieeecomputersociety.org/10.1109/HPCA57654.2024.00029
https://doi.ieeecomputersociety.org/10.1109/ISPASS57527.2023.00031
https://doi.ieeecomputersociety.org/10.1109/ISPASS57527.2023.00031
https://doi.org/10.1145/3639046
https://doi.org/10.1109/ISCA45697.2020.00070
https://doi.org/10.1109/ISCA45697.2020.00070
https://doi.ieeecomputersociety.org/10.1109/PACT58117.2023.00018
https://doi.org/10.1145/3352460.3358284
https://doi.org/10.1145/3620665.3640376
https://doi.org/10.1145/3589258
https://doi.org/10.1145/3470496.3533727
https://arxiv.org/abs/1906.00091

for commodity processing-in-dimm devices,” in 2024 ACM/IEEE 51st
Annual International Symposium on Computer Architecture (ISCA),
2024, pp. 245–260.

[68] C. Ortega, “Next generation upmem pim dram for ai
applications,” 2024. [Online]. Available: https://www.upmem.com/wp-
content/uploads/2024/09/240826-ABUMPIMP-2024-Keynote -
UPMEM-PIM-platform-for-Data-Intensive-Applications.pdf

[69] D. K. Panda, H. Subramoni, C.-H. Chu, and M. Bayatpour, “The
mvapich project: Transforming research into high-performance mpi
library for hpc community,” Journal of Computational Science, vol. 52,
p. 101208, 2021, case Studies in Translational Computer Science.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1877750320305093

[70] J. Park, J. Choi, K. Kyung, M. J. Kim, Y. Kwon, N. S. Kim, and J. H.
Ahn, “Attacc! unleashing the power of pim for batched transformer-
based generative model inference,” in Proceedings of the 29th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2, ser. ASPLOS ’24. New
York, NY, USA: Association for Computing Machinery, 2024, p.
103–119. [Online]. Available: https://doi.org/10.1145/3620665.3640422

[71] J. Park, B. Kim, S. Yun, E. Lee, M. Rhu, and J. H. Ahn, “Trim:
Enhancing processor-memory interfaces with scalable tensor reduction
in memory,” in MICRO-54: 54th Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO ’21. New York, NY,
USA: Association for Computing Machinery, 2021, p. 268–281.
[Online]. Available: https://doi.org/10.1145/3466752.3480080

[72] R. Pope, S. Douglas, A. Chowdhery, J. Devlin, J. Bradbury, J. Heek,
K. Xiao, S. Agrawal, and J. Dean, “Efficiently scaling transformer
inference,” in Proceedings of Machine Learning and Systems, D. Song,
M. Carbin, and T. Chen, Eds., vol. 5. Curan, 2023, pp. 606–624.
[Online]. Available: https://proceedings.mlsys.org/paper files/paper/
2023/file/c4be71ab8d24cdfb45e3d06dbfca2780-Paper-mlsys2023.pdf

[73] W. Qadeer, R. Hameed, O. Shacham, P. Venkatesan, C. Kozyrakis, and
M. Horowitz, “Convolution engine: Balancing efficiency and flexibility
in specialized computing,” Commun. ACM, vol. 58, no. 4, p. 85–93,
mar 2015. [Online]. Available: https://doi.org/10.1145/2735841

[74] S. Rashidi, W. Won, S. Srinivasan, S. Sridharan, and T. Krishna,
“Themis: A network bandwidth-aware collective scheduling policy for
distributed training of dl models,” in Proceedings of the 49th Annual
International Symposium on Computer Architecture, ser. ISCA ’22.
New York, NY, USA: Association for Computing Machinery, 2022, p.
581–596. [Online]. Available: https://doi.org/10.1145/3470496.3527382

[75] D. Reis, J. Takeshita, T. Jung, M. Niemier, and X. S. Hu, “Computing-in-
memory for performance and energy-efficient homomorphic encryption,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 28, no. 11, pp. 2300–2313, 2020.

[76] S. H. S. Rezaei, M. Modarressi, R. Ausavarungnirun, M. Sadrosadati,
O. Mutlu, and M. Daneshtalab, “Nom: Network-on-memory for
inter-bank data transfer in highly-banked memories,” IEEE Comput.
Archit. Lett., vol. 19, no. 1, p. 80–83, jan 2020. [Online]. Available:
https://doi.org/10.1109/LCA.2020.2990599

[77] Y. Ro, H. Cho, E. Lee, D. Jung, Y. H. Son, J. H. Ahn, and
J. W. Lee, “SOUP-N-SALAD: allocation-oblivious access latency
reduction with asymmetric DRAM microarchitectures,” in 2017
IEEE International Symposium on High Performance Computer
Architecture, HPCA 2017, Austin, TX, USA, February 4-8, 2017.
IEEE Computer Society, 2017, pp. 517–528. [Online]. Available:
https://doi.org/10.1109/HPCA.2017.31

[78] J. Romero, J. Yin, N. Laanait, B. Xie, M. T. Young, S. Treichler,
V. Starchenko, A. Borisevich, A. Sergeev, and M. Matheson, “Ac-
celerating collective communication in data parallel training across
deep learning frameworks,” in 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22), 2022, pp. 1027–1040.

[81] M. Seo, X. T. Nguyen, S. J. Hwang, Y. Kwon, G. Kim, C. Park,
I. Kim, J. Park, J. Kim, W. Shin, J. Won, H. Choi, K. Kim,

[79] S. S. Roy, F. Vercauteren, N. Mentens, D. D. Chen, and I. Verbauwhede,
“Compact ring-lwe cryptoprocessor,” in International workshop on cryp-
tographic hardware and embedded systems. Springer, 2014, pp. 371–
391.

[80] N. Samardzic, A. Feldmann, A. Krastev, S. Devadas, R. Dreslinski,
C. Peikert, and D. Sanchez, “F1: A Fast and Programmable Acceler-
ator for Fully Homomorphic Encryption,” in MICRO-54: 54th Annu.
IEEE/ACM Int. Symp. on Microarchitecture, ser. MICRO ’21. New
York, NY, USA: ACM, 2021, pp. 238–252.
D. Kwon, C. Jeong, S. Lee, Y. Choi, W. Byun, S. Baek, H.-J.
Lee, and J. Kim, “Ianus: Integrated accelerator based on npu-pim
unified memory system,” in Proceedings of the 29th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 3, ser. ASPLOS ’24. New York, NY, USA:
Association for Computing Machinery, 2024, p. 545–560. [Online].
Available: https://doi.org/10.1145/3620666.3651324

[82] S. Shim, S. Kim, J. Bae, K. Ko, E. Lee, K. Kim, K. Kim, S. Lee,
J. Hyun, I. Koh, J. Park, M. Kim, S. Shin, D. Lee, Y. Lee, S. Hyun,
W. Choi, D. Im, D. Lee, J. Jang, S. Lee, J. Chun, J. Oh, J. Kim, and
S.-H. lee, “A 16gb 1.2v 3.2gb/s/pin ddr4 sdram with improved power
distribution and repair strategy,” in 2018 IEEE International Solid-State
Circuits Conference - (ISSCC), 2018, pp. 212–214.

[83] W. Sun, Z. Li, S. Yin, S. Wei, and L. Liu, “Abc-dimm:
Alleviating the bottleneck of communication in dimm-based near-
memory processing with inter-dimm broadcast,” in Proceedings of
the 48th Annual International Symposium on Computer Architecture,
ser. ISCA ’21. IEEE Press, 2021, p. 237–250. [Online]. Available:
https://doi.org/10.1109/ISCA52012.2021.00027

[84] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of collective
communication operations in mpich,” Int. J. High Perform. Comput.
Appl., vol. 19, no. 1, p. 49–66, feb 2005. [Online]. Available:
https://doi.org/10.1177/1094342005051521

[85] B. Tian, Y. Li, L. Jiang, S. Cai, and M. Gao, “NDPBridge: Enabling
Cross-Bank Coordination in Near-DRAM-Bank Processing Architec-
tures,” in 51st International Symposium on Computer Architecture
(ISCA), Jun 2024, pp. 628–643.

[86] Y. Turakhia, G. Bejerano, and W. J. Dally, “Darwin: A genomics co-
processor provides up to 15,000x acceleration on long read assembly,”
in Proceedings of the Twenty-Third International Conference on
Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 199–213. [Online]. Available:
https://doi.org/10.1145/3173162.3173193

[87] S. Williams, A. Waterman, and D. Patterson, “Roofline: an insightful
visual performance model for multicore architectures,” Commun.
ACM, vol. 52, no. 4, p. 65–76, Apr. 2009. [Online]. Available:
https://doi.org/10.1145/1498765.1498785

[88] N. Zhang, B. Yang, C. Chen, S. Yin, S. Wei, and L. Liu, “Highly efficient
architecture of newhope-nist on fpga using low-complexity ntt/intt,”
IACR Transactions on Cryptographic Hardware and Embedded Systems,
pp. 49–72, 2020.

[89] Z. Zhe, L. Cong, Y. Fan, and S. Guangyu, “Dimm-link: Enabling
efficient inter-dimm communication for near-memory processing,” in
2023 IEEE International Symposium on High-Performance Computer
Architecture (HPCA), ser. HPCA ’23. IEEE Computer Society, 2023.

[90] M. Zhou, Y. Nam, P. Gangwar, W. Xu, A. Dutta, K. Subramanyam,
C. Wilkerson, R. Cammarota, S. Gupta, and T. Rosing, “Fhemem: A
processing in-memory accelerator for fully homomorphic encryption,”
2023. [Online]. Available: https://arxiv.org/abs/2311.16293

[91] M. Zhou, W. Xu, J. Kang, and T. Rosing, “Transpim: A memory-
based acceleration via software-hardware co-design for transformer,” in
2022 IEEE International Symposium on High-Performance Computer
Architecture (HPCA), 2022, pp. 1071–1085.

https://www.upmem.com/wp-content/uploads/2024/09/240826-ABUMPIMP-2024-Keynote_-UPMEM-PIM-platform-for-Data-Intensive-Applications.pdf
https://www.upmem.com/wp-content/uploads/2024/09/240826-ABUMPIMP-2024-Keynote_-UPMEM-PIM-platform-for-Data-Intensive-Applications.pdf
https://www.upmem.com/wp-content/uploads/2024/09/240826-ABUMPIMP-2024-Keynote_-UPMEM-PIM-platform-for-Data-Intensive-Applications.pdf
https://www.sciencedirect.com/science/article/pii/S1877750320305093
https://www.sciencedirect.com/science/article/pii/S1877750320305093
https://doi.org/10.1145/3620665.3640422
https://doi.org/10.1145/3466752.3480080
https://proceedings.mlsys.org/paper_files/paper/2023/file/c4be71ab8d24cdfb45e3d06dbfca2780-Paper-mlsys2023.pdf
https://proceedings.mlsys.org/paper_files/paper/2023/file/c4be71ab8d24cdfb45e3d06dbfca2780-Paper-mlsys2023.pdf
https://doi.org/10.1145/2735841
https://doi.org/10.1145/3470496.3527382
https://doi.org/10.1109/LCA.2020.2990599
https://doi.org/10.1109/HPCA.2017.31
https://doi.org/10.1145/3620666.3651324
https://doi.org/10.1109/ISCA52012.2021.00027
https://doi.org/10.1177/1094342005051521
https://doi.org/10.1145/3173162.3173193
https://doi.org/10.1145/1498765.1498785
https://arxiv.org/abs/2311.16293

	Introduction
	Background
	UPMEM PIM Architecture
	Collective Communications
	Evaluation Methodology

	Motivation: PIM Scalability Limitation
	Roofline Model
	Collective Communication Scalability

	PIMnet Architecture
	PIM-constrained Interconnect
	PIMnet Overview
	PIMnet Software/Interface

	PIMnet Microarchitecture
	Inter-Bank Network
	Inter-Chip Network
	Inter-Rank Network
	Address Generation/Traffic Scheduling
	Routing

	Evaluation
	Methodology
	Results

	Related work
	Conclusion
	References

