
TrioSim: A Lightweight Simulator for Large-Scale DNN
Workloads on Multi-GPU Systems

Ying Li
William & Mary

Williamsburg, VA, USA
yli81@wm.edu

Yuhui Bao∗
Northeastern University

Boston, MA, USA
bao.yu@northeastern.edu

Gongyu Wang
Lightmatter

Boston, MA, USA
wgongyu@gmail.com

Xinxin Mei
Jefferson Lab

Newport News, VA, USA
xmei@jlab.org

Pranav Vaid∗
Stanford University
Palo Alto, CA, USA

pvaid@cs.stanford.edu

Anandaroop Ghosh
Lightmatter

Boston, MA, USA
anandaroopg08@gmail.com

Adwait Jog
University of Virginia

Charlottesville, VA, USA
ajog@virginia.edu

Darius Bunandar
Lightmatter

Boston, MA, USA
darius@lightmatter.co

Ajay Joshi
Lightmatter/Boston University

Boston, MA, USA
ajay@lightmatter.co

Yifan Sun
William & Mary

Williamsburg, VA, USA
ysun25@wm.edu

Abstract
Deep Neural Networks (DNNs) have become increasingly capable
of performing tasks ranging from image recognition to content gen-
eration. The training and inference of DNNs heavily rely on GPUs,
as GPUs’ massively parallel architecture delivers extremely high
computing capability. With the growing complexity of DNNs and
the size of training datasets, training DNNs with a large number
of GPUs is becoming a prevalent strategy. Researchers have been
exploring how to design software and hardware systems for GPU
farms to achieve the best utilization, efficiency, and DNN accuracy
during training or inference. However, when designing and deploy-
ing such systems, designers usually rely on testing on physical hard-
ware platforms equipped with many GPUs, incurring high costs
that are almost prohibitive for system designers to test different
configurations and designs, even for highly resourceful companies.
While an alternative solution is to test on GPU simulators, they
are often too slow for these large-scale systems and depend on
profiling details collected from real distributed systems to initiate
the simulation. To address these challenges, we present TrioSim,
a novel lightweight simulator for DNNs on multi-GPU systems.
TrioSim combines performance modeling techniques and simula-
tion methods to achieve high flexibility, high simulation speed, and

∗Part of this work was done while Yuhui Bao and Pranav Vaid were interns at
Lightmatter.

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 Inter-
national License.
ISCA ’25, Tokyo, Japan
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1261-6/25/06
https://doi.org/10.1145/3695053.3731082

high accuracy. TrioSim minimizes the required input from users
by only relying on operator-level execution traces collected on a
single GPU and can simulate new software and hardware designs
that involve multiple GPUs connected with complex, asymmetrical
interconnects. Completing within seconds, TrioSim predicts the
execution time of DNN training on multi-GPU systems with aver-
age errors of 2.91%, 4.54%, and 6.82% for data parallelism, tensor
parallelism, and pipeline parallelism, respectively.

CCS Concepts
• Computing methodologies→ Simulation tools.

Keywords
Deep Neural Networks; Multi-GPU Systems; Simulation

ACM Reference Format:
Ying Li, Yuhui Bao, Gongyu Wang, Xinxin Mei, Pranav Vaid, Anandaroop
Ghosh, Adwait Jog, Darius Bunandar, Ajay Joshi, and Yifan Sun. 2025.
TrioSim: A Lightweight Simulator for Large-Scale DNNWorkloads on Multi-
GPU Systems. In Proceedings of the 52nd Annual International Symposium
on Computer Architecture (ISCA ’25), June 21–25, 2025, Tokyo, Japan. ACM,
New York, NY, USA, 15 pages. https://doi.org/10.1145/3695053.3731082

1 Introduction
Today, Deep Neural Networks (DNNs) are one of the most common
classes of workloads running on high-performance computing plat-
forms that equip GPUs [6, 18, 22, 27]. GPUs can provide extremely
high computing capabilities for DNN training and inference, with
their massively parallel architecture [47, 53]. Multi-GPU systems
are commonly used today for DNN training and inference due
to the large training dataset and model sizes [11, 46, 69]. How-
ever, multi-GPU systems introduce new challenges caused by data

1524

https://orcid.org/0009-0005-2737-0583
https://orcid.org/0000-0001-6308-3841
https://orcid.org/0009-0002-4800-7781
https://orcid.org/0000-0003-1046-5269
https://orcid.org/0009-0009-7249-7574
https://orcid.org/0009-0002-7294-7634
https://orcid.org/0000-0002-5525-7204
https://orcid.org/0000-0002-8218-5656
https://orcid.org/0000-0002-3256-9942
https://orcid.org/0000-0003-3532-6521
https://creativecommons.org/licenses/by-nd/4.0
https://creativecommons.org/licenses/by-nd/4.0
https://creativecommons.org/licenses/by-nd/4.0
https://doi.org/10.1145/3695053.3731082
https://doi.org/10.1145/3695053.3731082
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3695053.3731082&domain=pdf&date_stamp=2025-06-20


ISCA ’25, June 21–25, 2025, Tokyo, Japan Li, et al.

management, communication, and synchronization. The overhead
caused by the slow network between GPUs can diminish the per-
formance improvement gained from adding more GPUs.

Over the years, a variety of novel hardware techniques [10, 37, 42,
54, 61, 76] have been developed to address challenges in effectively
using multi-GPU systems for DNN workloads. Yet, researchers
often rely on real GPU hardware testbeds for validating design
techniques, incurring high costs. In many cases, due to a hardware
modification associated with a research idea, faithfully validating
the research idea can be almost impossible. These drawbacks urge
the development of methods that evaluate machine learning sys-
tems, memorymanagement solutions, and scheduling schemes with
a low cost, minimal entry barrier, and reasonable fidelity.

A possible solution is to evaluate DNN systems with GPU simu-
lators (e.g., Accel-Sim [28], MGPUSim [4, 67], Multi2Sim [72], gem5
AMD GPU Models [62]). However, these cycle-level simulators are
too slow for large-scale DNN workloads and multi-GPU platforms.
As estimated in the work, Principal Kernel Analysis [1], simulating
such workloads running on GPUs may take centuries, rendering
them unusable. Recent research [1, 40, 45] has also been developing
sampling-based methods to skip part of the simulation, enabling
cycle-based simulators to simulate DNN workloads. Yet, they are
still resource-demanding when identifying the execution phases
and sampling opportunities.

Recent developments in data-driven performance models (e.g.,
AstraSim [60, 74], DistSim [41], vTrain [3]) are fast and reasonably
accurate. However, a major problem with these existing solutions is
that they heavily rely on the profiling traces that include GPU-GPU
communication tasks. This requirement causes two problems: 1)
users must acquire multi-GPU platforms to gather the traces, which
may increase the barrier, and 2) modeling different communication
patterns and network configurations is constrained.

To deliver a practical solution for evaluating DNN systems, we in-
troduce TrioSim.1 TrioSim takes the operator-level traces collected
from the PyTorch (extending to other frameworks is possible) exe-
cuting on a single GPU and extrapolates execution details for more
complex multi-GPU execution.

Central to TrioSim is a trace extrapolator, an operator-level per-
formance model [34], and a high-level network simulator. The trace
extrapolator determines which GPU should perform the opera-
tion of a layer and what data is necessary. In case the data is not
available on the GPU, the trace extrapolator adds communication
tasks, including direct memory movement tasks and collective com-
munication tasks analogous to the communication primitives of
the NVIDIA Collective Communications Library (NCCL) [50]. For
the operator-level performance model, we use Li’s Model [34], to
predict the execution time of DNN operators and layers. Finally,
to estimate the data movement time, we built a high-level flow-
based network model, which ignores protocol details but focuses
on the latency and bandwidth of network links and bandwidth
sharing between streams of data (similar to flow-based network
simulator [12, 16]).

The novelty of TrioSim is twofold. First, TrioSim offers superior
capability over existing simulators by requiring only a single GPU
trace to faithfully simulate a multi-GPU system. This minimal trace

1https://github.com/sarchlab/triosim

requirement allows users to dynamically adjust key parameters,
including batch size, network topology (e.g., NVSwitch [49], mesh,
fat tree, etc.), parallelism strategy (e.g., data parallel [33, 75], tensor
parallel [65], pipeline parallel [25, 65]), and collective communica-
tion schemes (e.g., NCCL-style reduction [50]), all without requir-
ing additional trace collection. Second, this capability is enabled
by TrioSim’s unique trace extrapolation method, which balances
performance modeling and simulation. At a high level, TrioSim
functions as a simulator, reconstructing future events based on
the system state. At a low level, it integrates Li’s Model [34] for
computation prediction and a flow-based network model for com-
munication, ensuring accurate estimation of execution time.

The main goal of this paper is to deliver a blazingly fast simulator
that can model the performance of large-scale DNN training on
massive multi-GPU platforms (see subsection 8.4 for its limitations).
In particular, this paper contributes:
1) A tracer. The tracer collects the GPU execution data at layer or
operator levels. We highlight the capability of also tracing tensor
information and recording which layer or operator accesses which
part of data. Connecting computing trace with tensor-access trace
provides critical information for jointly modeling computation and
data movement.
2) A trace extrapolator. The trace extrapolator converts single
GPU traces into multi-GPU traces according to the parallelism
scheme (e.g., data parallelism, tensor parallelism, pipeline paral-
lelism). Trace extrapolation enables the simulation of multi-GPU
execution without the hardware.
3) The simulator, TrioSim. We combine the trace extrapolator,
a linear regression-based performance model, and a lightweight
network model to build TrioSim. TrioSim can simulate the GPU
execution for DNNs on multi-GPU systems with high performance
and reasonable accuracy. TrioSim can finish the simulation of mul-
tiple batches of DNN training within seconds. The average errors
when predicting DNNs training time on a system with 2 GPUs are
2.91%, 4.54%, and 6.82% for data parallelism, tensor parallelism, and
pipeline parallelism, respectively.

2 Background
2.1 DNN Training on Multi-GPU Platforms
Multi-GPU platforms are widely utilized for accelerating DNN train-
ing as the GPUs jointly provide higher computing throughput and
memory capacity than single GPU platforms [46, 69]. To fully uti-
lize multiple GPUs in DNN training, schemes that properly place
the data, schedule computing tasks, communicate across GPUs,
synchronize progress, and aggregate results are required. Below we
introduce popular parallel DNN training, GPU-GPU communica-
tion schemes, and performance modeling approaches.

Parallel DNN training.Central to parallel DNN training schemes
(see Figure 1 for an overview) is the decision on how to partition
workloads across GPUs, with strategies tailored to address specific
challenges. Data parallelism (DP) distribute batches of input data
across GPUs, allowing each GPU to process the batches simultane-
ously. Each GPU performs forward and backward propagation on
their data batches individually, calculating the gradients of the pa-
rameters. Then, inter-GPU communication synchronizes gradients
to update weights. Tensor parallelism (TP) splits each tensor (e.g.,

1525



TrioSim: A Lightweight Simulator for Large-Scale DNN Workloads on Multi-GPU Systems ISCA ’25, June 21–25, 2025, Tokyo, Japan

Tensor

Weight Update

Fo
rw

ar
d

GPU 0 GPU 0

Tensor

Layer 2 Layer 1 

Tensor

Layer 1 

Tensor

Layer 2 

Layer 1 

Tensor

GPU 1

Tensor

Layer 2 Layer 1 

Tensor

Layer 1 

Tensor

Layer 2 

Tensor

Layer 2 

Tensor

Layer 1 

Tensor

Layer 2 

(a) Data Parallelism (b) Tensor Parallelism

Tensor

GPU 1

Layer 1  Layer 2 
Tensor

Layer 1 
Tensor

Layer 2 
Tensor

Tensor

B
ac

kw
ar

d

Comm

Weight Update

Comm

C
om

m

C
om

m

C
om

m

C
om

m
C

om
m

C
om

m

Tensor

Layer 1 

Tensor

Layer 2 

Tensor

Layer 2 

Tensor

Layer 1 

C
om

m
C

om
m

Weight Update

(c) Pipeline Parallelism

GPU 0 GPU 1

Data 1 Data DataData 0 Data

Comm Inter-GPU Communication

Comm Comm

Figure 1: Parallelism strategies include: (a) Data parallelism, splitting the dataset into parts and processing them in parallel.
Then GPUs communicate and synchronize to update model weights. (b) Tensor parallelism, dividing tensor into parts and
assigning each part to be processed by a GPU. Afterward, GPUs communicate to gather the output. (c) Pipeline parallelism,
assigning layers to GPUs. Each layer calculates and sends the output to the next GPU.

parameters of a layer, layer input) to be processed across multiple
GPUs and performs computing on each part of the tensors in paral-
lel. When the layer applied tensor parallelism finishes, each GPU
communicates with others to collect the partial outputs of the layer
from all devices, forming the whole results. Pipeline parallelism
(PP) distributes DNN layers across GPUs and can further divide
each mini-batch into micro-batches. Each GPU handles its assigned
micro-batch and forwards the processed micro-batch to the next
GPU. While the next GPU processes this micro-batch, the current
GPU begins the next, forming an overlapping pipeline that runs
until all micro-batches are done, enabling continuous data flow
and parallel execution across GPUs. These methods, often com-
bined as hybrid parallelism (HP), optimize scalability and resource
utilization in multi-GPU systems.

The AllReduce algorithms. The AllReduce algorithm is a fun-
damental operation used for communication among devices while
training DNNs. It is especially prevalent in training DNNs across
multiple GPUs or nodes. AllReduce is designed to aggregate data
across all participating processors and distribute the results back
to them, ensuring each processor has the complete set of results.
This operation is critical in scenarios such as averaging gradients
during DNN training, where synchronization and aggregation of
data from all nodes are necessary for accurate model updates.

A popular implementation of the AllReduce operation is the ring-
based algorithm, which offers an efficient and scalable solution for
data aggregation in distributed systems. In the ring-based AllRe-
duce, each node in a ring topology sequentially sends and receives
data to and from its neighbors. Specifically, each node passes on its
data to the next node and simultaneously receives data from the
previous node in the ring. This process continues until all nodes
have a complete set of aggregated data. The ring-based approach
minimizes bandwidth usage by evenly distributing the load among
all nodes. This method is distinguished by its predictable commu-
nication pattern and the simplicity of its implementation, which
contributes to its widespread adoption in various high-performance
computing environments. TrioSim’s trace extrapolator can generate

a sequence of tasks of ring-based AllReduce algorithm, allowing
TrioSim to simulate the collective communication.

Multi-GPU architectures. While multi-GPU setups offer sub-
stantial advantages of higher memory and compute capacity, effec-
tive coordination of tasks and communication across GPUs remains
a critical challenge. Especially, the choice of network topology and
interconnect technology between GPUs significantly impacts com-
munication overhead and overall performance. Common topologies
include ring, tree, mesh, and bus. Modern implementations that
facilitate connections among multiple GPUs include PCI Express
(PCIe) [56], NVLink [52], and NVSwitch [49]. PCIe, the standard
interconnect, is widely employed in many systems and is typically
arranged in a hierarchical tree-like structure to optimize both spatial
and temporal data flow. NVLink provides a high-speed alternative
to PCIe, significantly boosting data transfer rates and supporting
flexible topologies such as ring and mesh, which are essential for
complex computational tasks requiring rapid data sharing across
GPUs. In systems like the NVIDIA DGX-2, NVLink utilizes a hyper-
cube mesh topology, connecting 8 GPUs within each machine. This
setup includes links with double bandwidth, strengthening connec-
tions to form a loop that optimally supports the ring-based AllRe-
duce algorithm. Extending NVLink’s capabilities further, NVSwitch
enables any-to-any communication, eliminating bottlenecks found
in traditional interconnects by allowing a fully connected network
topology within the system.

Given the pivotal role of interconnects in system performance,
TrioSim needs to model the network behaviors carefully. How-
ever, since our primary objective is high-performance simulation,
employing cycle-by-cycle or flit-by-flit simulation may not be prac-
tical. Consequently, TrioSim develops and integrates a lightweight
network model that balances detail and performance.

3 Related Work
GPU performance analysis and prediction are crucial in optimizing
the efficiency of DNN models. Traditional profiling techniques are

1526



ISCA ’25, June 21–25, 2025, Tokyo, Japan Li, et al.

Table 1: Comparison of TrioSim with Similar Performance Modeling Tools across Different Features

Feature Li’s Model [34] AstraSim [60, 74] DistSim [41] vTrain [3] TrioSim (this work)

Target Workload DNN inference DNN training DNN training Transformer training DNN training
Parallelism Not supported DP, TP, PP DP, TP, PP, HP DP, TP, PP, HP DP, TP, PP
Network Not supported Symmetrical (e.g., ring, switch) Profile-based Profile-based Flexible
Trace Requirement Single-GPU Multi-GPU Multi-node Multi-node Single-GPU
Performance Model Analytical Mainly cycle-level simulation Analytical Analytical Hybrid analytical & simulation
Support New GPU Yes No No No Supported using Li’s Model
Claimed Error 7% (single GPU)

15.2% (new GPU)
N/A <4% (multi-GPU)

<5% (single GPU)
8.37% (single node)
14.73% (multi-node)

2.91% (DP), 4.54% (TP)
6.82% (PP)

often insufficient to capture inter-GPU interactions at scale [2, 8,
19, 29, 51, 77, 78], prompting the development of approaches for
modeling DNN performance on multi-GPU systems. We analyze
the potential solutions, highlighting their strengths and limitations.

GPU simulators. The most straightforward method to evaluate
DNN systems running on GPU systems is using cycle-level GPU
simulators (e.g., Accel-Sim [28], Multi2Sim [72], MGPUSim [67],
gem5 AMD GPU Models [62]). However, these simulators are ineffi-
cient for large-scale DNN workloads and multi-GPU platforms due
to their slow speeds. Simulating a full-scale DNN workload (e.g.,
full-scale ResNet on a single GPU) may take years [1].

Sampling-based simulation. To accelerate GPU system sim-
ulation, sampling-based methods [1, 40, 45] have been developed.
These methods selectively bypass portions of the simulation where
performance can be accurately predicted based on detailed simu-
lations of representative execution segments. For example, a GPU
simulator can simulate some of the warps in a kernel in detail and
skip the rest of the warps that execute the same set of instruc-
tions [40]. Despite these efforts, sampling-based methods remain
relatively slow and resource-intensive, mainly due to the need for
detailed, full-scale simulation during non-sampling periods.

GPU scale-model. GPU scale-model simulation [64] predicts
large-scale GPU performance by extrapolating from smaller-scale
GPU performance numbers. Scale-model simulation relies on pre-
profiled small-scale models (e.g., GPUs with 4 Streaming Multi-
Processors) and assumes predictable scaling. However, the scale-
model lacks explicit communication modeling, reducing its adapt-
ability to new architectures and multi-GPU parallelism strategies.
TrioSim, in contrast, requires only a single GPU trace, explicitly
simulates inter-GPU communication, and supports configurable
network topologies and parallelism schemes. While scale-model
simulation is useful for high-level GPU performance estimation and
architecture-level GPU research, TrioSim is better suited for system-
level GPU research (e.g., exploring the best parallelism strategy for
GPUs connected with complex networks).

Trace-based DNN performance models/simulators. Several
trace-based performance models have been developed to evaluate
DNNworkloads onmulti-GPU systems, including AstraSim [60, 74],
DistSim [41], and vTrain [3]. These models aim to estimate system
performance efficiently by leveraging execution traces rather than
detailed cycle-level simulation or extensive multi-GPU profiling.
We compare these tools and TrioSim in Table 1 in detail.

AstraSim [60, 74] is designed for large-scale deep learning train-
ing and provides detailed communication modeling for distributed

systems. DistSim [41], on the other hand, is tailored for hybrid par-
allelism exploration and supports multi-GPU execution modeling.
While both tools are valuable, they require multi-GPU or multi-
node profiling traces, which raises their barrier to use. TrioSim, in
contrast, requires only a single GPU trace, significantly reducing
the profiling burden and making it more accessible for users who
don’t have large-scale hardware. Additionally, as TrioSim adopts a
hybrid simulation and performance modeling method, TrioSim pro-
vides more flexible configuration capability. For example, TrioSim
can easily support non-symmetrical network configuration (e.g.,
one link is slower than other links), which can be challenging to
model and evaluate in AstraSim and DistSim.

Li’s Model [34, 35] provides a kernel-level or operator-level ana-
lytical model to predict GPU execution times efficiently. However,
it is a per-kernel or per-operator model rather than a full simula-
tor, meaning it cannot capture system-wide execution behaviors
or inter-GPU communication dynamics. By leveraging Li’s Model,
TrioSim extends its capability to support full-scale DNN training
simulations for better evaluating multi-GPU workloads.

A recent notable tool is vTrain [3], which is specifically designed
for transformer-based large language models (LLMs) and optimizes
profiling by leveraging the repetitive nature of transformer layers.
However, vTrain has two key limitations that prevent it from fully
meeting the broader needs of the community: (1) vTrain is special-
ized for LLMs, and while it has been validated on a 512-GPU system,
it is tested on only a single workload, limiting its generalizability.
In contrast, TrioSim provides a more general DNN simulation plat-
form with validation across multiple workloads, demonstrating
broader applicability. (2) vTrain has strict trace requirements, as it
not only requires multi-GPU hardware for trace collection but also
mandates that batch size and parallelism settings remain identical
between profiling and simulation. This rigid requirement hinders
comprehensive design space exploration. By comparison, TrioSim
requires only a single GPU trace, allowing users to flexibly config-
ure network topology, parallel training strategies, and batch sizes,
making it a more versatile platform.

4 TrioSim
The design of TrioSim (see Figure 2) encompasses the following
main functions: trace capturing, multi-GPU trace extrapolation,
linear-regression-based time modeling, and lightweight network
modeling. TrioSim is implemented using the Go language and on
top of the Akita Simulator Engine [67]. The event-driven simulation
engine allows us to fast-forward unnecessary details and accelerate

1527



TrioSim: A Lightweight Simulator for Large-Scale DNN Workloads on Multi-GPU Systems ISCA ’25, June 21–25, 2025, Tokyo, Japan

Linear Regression-Based
Performance Model

Pytorch

Parallel Exec 
Schema

GPU Config

GPU Exec Trace
Mem Mem Mem

Operator Operator

Mem Comm Execution 
Time

Timeline 
Trace

Communicate
Info

Input

Network Config

GPU Exec Trace

GPU Exec Trace

GPU Exec Trace

Mem Mem Mem

Operator Operator

Mem Comm

Mem Mem Mem
Operator Operator

Mem Comm

Mem Mem Mem
Operator Operator

Mem Comm

Lightweight
Network Model Output

Tracer

Pytorch
Profiler

Graph
Observer

Mem

Mem

Mem

Mem

Multi-GPU Trace Extrapolator

Mem

Mem

Mem

Mem

Operator

Operator

Operator

Operator

Compute
Info

Figure 2: The design of TrioSim comprises trace capturing, multi-GPU trace extrapolation, linear regression-based time
modeling, and lightweight network modeling.

simulation. The Akita Simulator Engine also allows TrioSim to
natively support real-time monitoring with AkitaRTM [44] and
visualization with Daisen [68].

4.1 Overview
The primary input for TrioSim is the trace generated by the tracer
tool. The additional inputs to TrioSim include the network topol-
ogy, the GPU parameters, and the parallelism schemes. We support
different types of parallelism, such as data parallelism, tensor par-
allelism, and pipeline parallelism.

With the input configurations, the multi-GPU trace extrapolator
will distribute the single GPU trace across multiple devices during
the simulation process. The linear regression-based performance
model will predict the computation time of operators, while the
lightweight network model will estimate the memory fetching time.
During synchronization among GPUs, the communication process
will be initiated by TrioSim and the lightweight network model
measures the communication time.

For the output of TrioSim, it can return the total predicted exe-
cution time for DNNs on multiple GPUs with different parallelism
applied. It can also return the communication time and computa-
tion time of each layer or stage for workloads. At the same time, it
shows the timeline of the communication process among GPUs or
the computation process on each GPU. The other information pro-
vided by TrioSim includes details on the input and output tensors of
each layer and the amount of data involved in gradient calculations
during AllReduce operations.

4.2 Tracer
Trace format. TrioSim traces include information about the GPU
operations performed in DNN training processes. We require each
entry to include the operator name, measured execution time, and
input/output as a list of tensor IDs. Additionally, we maintain a
second table that records all the tensors used in the DNN training
and inference process. Other than the tensor ID, we mainly record
tensor dimensions to estimate the number of bytes that need to be
moved if the tensor is not on the GPU that uses it.

Tracer design. TrioSim’s tracer is built on PyTorch [55], one of
the most popular DNN frameworks. The tracer mainly relies on the
output generated by the PyTorch Profiler and the Execution Graph
Observer to form a holistic view of the execution. The trace format
is standard, so supporting other frameworks is possible. We leave
supporting other frameworks as future work.

We rely on PyTorch Profiler [55] to extract the operators exe-
cuted by the GPU and the operators’ execution times. We first use
the PyTorch Profiler recorded CPU traces, which include the DNN
layers and the underlying operators (e.g., matrix multiplication,
matrix transpose) that are executed during training. PyTorch Pro-
filer can also record the GPU kernels executed, with their start and
end times. We use the PyTorch Profiler recorded information to
reconstruct the mapping between the kernels, operators, and layers.
We consider the operator start and end time as the time that its first
kernel starts and its last kernel ends, respectively.

Additionally, we use the Execution Graph Observer [38] to ex-
tract both the operators for DNN layers executed and the associated
inputs and outputs data dependencies during the DNN training pro-
cess. For each operator, Execution Graph Observer provides rich
tensor-related information, including 1) the input/output tensors
as a list, 2) tensor category (input/weight/gradient/output), and 3)
tensor format (element data type, dimension).

Using the layer information as a bridge, we blend the data pro-
vided by the Pytorch Profiler and the Execution Graph Observer
to reconstruct both the operator execution and memory access
information. Overall, the TrioSim’s tracer captures details of opera-
tor specifications, operator execution time, and tensors accessed
(see Figure 3).

4.3 Multi-GPU Trace Extrapolator
Simulating multi-GPU DNN workloads requires multi-GPU execu-
tion traces. However, users may not physically have the multi-GPU
systems that they want to evaluate. Therefore, we decide to only
require users to provide traces collected from single GPU execu-
tion and we provide a trace extrapolator to automatically convert
single-GPU traces to multi-GPU traces. The whole extrapolation

1528



ISCA ’25, June 21–25, 2025, Tokyo, Japan Li, et al.

Layer A Layer B Layer C

Kernel 3

Kernel 2

Kernel 1 Kernel 4 Kernel 5

CPU

GPU

Kernel 6

Input

Output

T1   T2

T3

T3   T4   T5

T6

T6   T7

T8

Figure 3: Trace capturing in tracer. Trace generated by Py-
Torch Profiler shows layers in CPU and kernels inGPU,while
Execution Graph Observer extracts the operators on the CPU
and identifies inputs and outputs data dependencies.

process happens while the simulation unfolds. Extra calculation
and communication operators are added on the fly, throughout the
whole simulation process.

TrioSim initiates the extrapolation process by processing the
single GPU trace. Upon reading the first operator, the trace ex-
trapolator decides which GPU (can be multiple GPUs) needs to
perform the operator. Assuming 2 GPUs need to perform the oper-
ator, TrioSim then checks if these 2 GPUs have the required data
for the operator in their local memory. If not, TrioSim inserts data
movement operators before the duplicated calculation operators.

After the insertion process, TrioSim processes the inserted data
movement and calculation operators, moving the time forward. The
virtual time movement (virtual time is the time within the simu-
lated world) is determined by the computing performance model
(see subsection 4.4) and the network model (see subsection 4.5).
After finishing the first element in the trace, TrioSim will move on
to the next element until there is no more element left in the trace.

Users can specify the parallel execution and communication
schemes and the hardware connection topology. We natively sup-
port data parallelism, tensor parallelism, and pipeline parallelism
training. For inter-GPU communication, we support NCCL-style
collective communication, including reduce, scatter, and gather
processes. TrioSim supports extending network topology, paral-
lelism, and collective communication schemes, allowing flexible
and straightforward extension.

Data parallelism training. TrioSim supports simulating the
data parallelism strategy on multiple GPUs. For the forward and
backward propagation process, the trace extrapolator simply dupli-
cates all the computing operators. After receiving gradient tensors
from the forward pass, the trace extrapolator adds the necessary
operators for the AllReduce operation either parallel with the back-
ward pass to save execution time or after the backward pass.

TrioSim allows changing the batch sizes different from what is
recorded in the trace, which is not easy for prior simulators (e.g.,
AstraSim, vTrain). The operator calculation time will need to scale,
estimated using the linear regression-based performance model
(see subsection 4.4). The memory movement time will also need to
change accordingly. This feature allows users to explore the impact
of batch size on training speed and efficiency.

Tensor parallelism training. TrioSim also supports the simu-
lation of the tensor parallelism strategy on multiple GPUs. Tensor
parallelism divides the weight matrix across different devices. Each

G
PU

 1
G

PU
 0 Layer 1 

MB 1

Comm

Layer 1 
MB 2

Layer 2 
MB 1

Layer 2 
MB 2

Layer 2 
MB 2

Layer 2 
MB 1

Layer 1 
MB 2

Layer 1 
MB 1

CommCommComm

Forward Backward

Figure 4: GPipe in TrioSim. Assuming the simple model has
two layers, with each GPU assigned one layer, the GPipe
implementation in TrioSim divides the one mini-batch into
two micro-batches in this example.

device computes its partition of the weight matrix and then collects
the partial outputs from all devices. We simulate tensor parallelism
for layers, such as convolution, linear, and embedding, as they are
also parallelly executed by PyTorch. When simulating a layer ex-
ecuted with tensor parallelism, the trace extrapolator distributes
divided operators into each GPU’s queue and appends the neces-
sary communication operators at the layer’s end. TrioSim then
processes all operators according to the queue.

Pipeline parallelism training. In the implementation of pipeline
parallelism, different layers or stages of DNNs are assigned to dif-
ferent devices by TrioSim according to the user’s specification. We
implement the GPipe (see Figure 4) in TrioSim because it is widely
adopted by popular frameworks [46, 57].

Based on GPipe, the trace extrapolator generates micro-batch
computation operators by partitioning mini-batches into equal-
sized micro-batches. It initially assigns the computation operators
for the first micro-batch layers to the first GPU. Next, it initiates
communication operators, allowing the first GPU to send its output
data to the next GPU. Simultaneously, the trace extrapolator begins
the computation operators for the next micro-batch layers on the
first GPU. This cycle repeats, enabling continuous entry of micro-
batches into the pipeline. TrioSim then executes all the computation
and communication operators, establishing pipeline parallelism
across multiple GPUs and measuring the execution time.

Ring-based collective communication. TrioSim natively sup-
ports NCCL-style collective communication for ring-based net-
works. In a ring topology, each device connects to two adjacent
devices: a left and a right neighbor. TrioSim supports ring-based
collective communication as part of the trace extrapolation process.
Memory transfer tasks are added to the extrapolated trace when
GPUs communicate with each other. Then, the tasks will be picked
up by the simulator, and the transfer time will be estimated by the
network model (to be introduced).

4.4 Operator Performance Model
TrioSim replays the extrapolated trace, one operator after another.
To start the execution of one operator, TrioSim needs to make sure
that the data to be used by the operator is available on the device.
If not, input data will be fetched (requires the network model to
estimate time), and output data will be allocated. Here, we make
assumptions that 1) a tensor is always stored on a single remote
location and 2) the execution cannot start until the data is available.
The assumption may not be true for architecture-level research
where data can be loaded during kernel execution but is generally

1529



TrioSim: A Lightweight Simulator for Large-Scale DNN Workloads on Multi-GPU Systems ISCA ’25, June 21–25, 2025, Tokyo, Japan

acceptable for system-level research [14, 17, 63]. Once the data to be
accessed by an operator is on the local GPU, the operator execution
starts. TrioSim does not simulate any detail of operators but simply
predicts the execution time of the operator execution and directly
fast forwards to the operator completion time.

TrioSim provides two different solutions to predict operator
execution time. A simpler solution supported by TrioSim uses the
trace provided time, which is measured on the single GPU platform,
to serve as the execution time. This method is accurate but not
flexible as we cannot change the batch size (in data parallelism)
or tensor size (as in tensor parallelism). TrioSim always uses the
trace-provided operator execution time when the environment and
parameters of multiple GPU simulations are the same with the
single GPU trace.

A more sophisticated solution is to use Li’s Model [34], which
has demonstrated high time-prediction accuracy without extensive
calculation. TrioSim passes the operator input/output dimensions
to the performance model, allowing the performance model to
predict the new operator’s (different input/output size) execution
time. Thus, TrioSim can use single-GPU operator time to predict
the time for multi-GPU operators by comparing the difference in
floating-point operations (FLOPs) and using the prediction results
as the new operator execution time on the extrapolated trace. While
we mainly use Li’s Model, TrioSim add a significant extension to
Li’s Model by supporting DNN training.

4.5 Network Modeling
The goal of TrioSim is to support the design of large-scale multi-
GPU distributed DNN training systems. A major design factor is
the network that communicates the GPUs and computing nodes.
Therefore, developing or integrating a network performance model
in TrioSim is necessary.

A major consideration with integrating an existing architectural
network simulator [26] is performance. Most existing network sim-
ulators [26] in the computer architecture domain model networks
in cycle-level details, which ensures great accuracy at the cost of
slow simulation. To allow fast network simulation, we must dis-
card the transmission details and focus on key factors that impact
the performance. In packet-switch networks, packets are divided
into flits (the units that can be sent in one cycle), and the flits are
independently transferred to the destination. The links can be gen-
erally considered as pipelines (stages and cycles per stage jointly
control throughput and latency), allowing for easy modeling and
performance estimation.

TrioSim consider the transfer of a packet as a 4-step process,
including 1) routing, 2) bandwidth allocation, 3) progress update,
and 4) delivery. When a packet starts to send (see Figure 5), the
first step is to establish a packet-switching network route. We use
the shortest path algorithm to determine the route. Then, once
the route is determined, we allocate bandwidth for the links on
the route. Given that we use an event-driven simulation engine,
we schedule a potential delivery event at the time calculated using
Little’s law [39], assuming the bandwidth allocation will not change
afterward. Scheduling events allow us to skip the transfer details
and fast-forward the simulation. In case if there is a new packet
starts or completes the transfer, we recalculate the bandwidth and

1 3
2

T2

5

4

T3 T4 T5

7

8
6

T1

Figure 5: Message sending process in packet-switching net-
work in TrioSim. Case A: only one message in the link. 1) A
new message comes. 2) Routing, bandwidth allocation, and
scheduling an event at the time, T1. 3). No new message
comes, the destination device receives the message at the
time, T1. Case B: two messages in the link. 4) Send the mes-
sage to the destination. Routing, bandwidth allocation, and
scheduling events at the time, T2. 5) A new message starts
to transfer, and the current two messages share at least one
link. 6) Recalculate the bandwidth and reschedule the deliv-
ery events of all the packets that are currently in transit at
the time, T3 and T5 separately. 7) The destination receives the
orange message at the time, T3. Because the orange message
is received, it recalculates the bandwidth and reschedules the
delivery event for the blue message at the earlier time, T4. 8)
The destination receives the message at the time, T4.

re-schedule the delivery events of all the packets that are in transit
currently. Finally, at the time of the delivery event, we push the
packet to the destination buffer, notify the receiver, and recalculate
the bandwidth allocation for other packets.

While TrioSim supports packet-switching networks by default,
the network model can be easily swapped. In subsection 7.1, we will
demonstrate TrioSim’s capability of modeling a circuit-switching
photonic network.

5 Experiment Methodology
We use a series of experiments to validate the accuracy of TrioSim.
The details of the experiments are provided below.

Hardware environment.We validate against three platforms
(P1, P2, P3). P1 has 2 NVIDIA A40 GPUs, P2 has 4 NVIDIA A100
GPUs, while P3 has 8 NVIDIA H100 GPUs. GPUs in P1 are con-
nected with PCIe, while GPUs in P2 and P3 are connected with
NVLinks. Both the GPU and connection diversity demonstrate that
TrioSim is capable of modeling the performance of a wide range of
configurations.

Users can set up any bandwidth value of the links in TrioSim. For
validation purposes, we need to provide a reasonable bandwidth
that matches the hardware being validated against. We find that
the theoretical bandwidth of the links is not usually useful as the
achieved bandwidth is usually only a fraction of the theoretical one.
To measure the achieved bandwidth, we use nccltest [48]. We use
the measured bandwidth as the input parameter for communication
in our simulator. Throughout all the experiments, we use a single
set of throughput numbers for the platforms.

Software environment.We use the same system configuration
for all the platforms. Python and CUDA versions are 3.10.12 and
12.1, respectively. For PyTorch and its related libraries, we use torch
2.1.0+cu121, torchvision 0.16.0+cu121, and torchaudio 2.1.0+cu121

1530



ISCA ’25, June 21–25, 2025, Tokyo, Japan Li, et al.

correspondingly. For transformer models, since the pipeline paral-
lelism of transformer training is under active development, we use
the nightly versions, torch 2.5.0.dev20240623+cu121, torchvision
0.20.0.dev20240623+cu121, and torchaudio 2.4.0.dev20240623+cu121.

Workloads. We choose two types of representative DNNs. The
first type is image classification DNNs, including DenseNet [24]
(DenseNet-121, DenseNet-161, DenseNet-169, DenseNet-201, rep-
resented by DN-121, DN-161, DN-169, DN-201 in figures) and
ResNet[23] (ResNet-18, ResNet-34, ResNet-50, ResNet-101, ResNet-
152, represented by RN-18, RN-34, RN-50, RN-101, RN-152 in fig-
ures), and VGG [66] (VGG-11, VGG-13, VGG-16, VGG-19), all from
the torchvision library. The second type includes transformer DNNs,
mainly used for natural language processing (NLP), including GPT-
2 [58], BERT [9] (BERT-Base-Uncased), T5 [59] (T5-Small), FLAN-
T5 [7] (FLAN-T5-Small), and Llama [13, 70, 71] (Llama-3.2-1B)
sourced from Hugging Face [73].

Parallelism strategy. We validate TrioSim against real hard-
ware with standard data parallelism, distributed data parallelism
(DDP), tensor parallelism, and pipeline parallelism training of DNN
models in Pytorch library.

Standard data parallelism and distributed data parallelism are
modules, DataParallel and DistributedDataParallel provided
by PyTorch. The key difference is that distributed data parallelism is
multi-processing while standard data parallelism is multi-threading,
allowing distributed data parallelism to avoid performance over-
head caused by the Global Interpreter Lock (GIL) of the Python
interpreter. A more simulator-related difference is that distributed
data parallelism overlaps NCCL communication with layer back-
ward propagation calculation, while standard data parallelism waits
until all the backward propagation is finished before triggering the
NCCL communication process.

For tensor parallelism, we use the open-source library Black-
Samorez/tensor_parallel [5]. For pipeline parallelism, we use the
PyTorch module, torch.distributed.pipeline.sync.pipe for
image classification DNNs. And for transformer DNNs, we use
torch.distributed.pipelining. We need another module for
transformers because torch.distributed.pipeline.sync.pipe
requires converting the model layers in a sequential manner to de-
fine the desired order of execution before the parallelism. However,
it does not support transformer models in the experiment set. Both
of the libraries are built based on the GPipe algorithm, which maps
the pipeline parallelism implementation method in TrioSim.

Time measurement.We measure end-to-end execution time
using torch.cuda.Event API provided by PyTorch. It can take
time stamps before and after the execution of each batch. We run
each batch for 41 iterations, with the first 30 batches serving as a
warm-up phase. For the single GPU case, we calculate the average
time for batches 31 to 40 after the warm-up. We use the PyTorch
Profiler to gather layer or kernel time information for batch 41. The
data gathering happens on different batches to prevent profiling
overhead impact on measured performance. Additionally, we use
the Execution Graph Observer tool to collect detailed input, output,
and other tensor or data information from batch 41. For each DNN,
we also run multi-GPU cases that apply different parallelisms. We
average the execution time from batch 31 to 40, after the 30 batch
warm-up, as the ground truth to be validated against. Note that,
for the real-hardware time when using tensor parallelism in our

DN-121RN-18 RN-34 RN-50
RN-101

VGG-11
VGG-13

VGG-16
VGG-19 BERT

0.96

0.98

1.00

1.02

1.04

No
rm

al
ize

d 
Ti

m
e

Hardware Predict-A40 Predict-A100

Figure 6: Comparing the TrioSim-predicted and real-
hardware time when the batch size is 256, while only provid-
ing TrioSim with traces collected for batch size 128. Other
models are out of memory when the batch size is 256 on real
hardware. The average error is 1.10% and 3.25% for A40 and
A100, respectively.

DN-121
DN-161

DN-169
DN-201

RN-18
RN-34

RN-50
RN-101

RN-152
VGG-11

VGG-13
VGG-16

VGG-19
BERT

GPT2 T5
Fla

n-T5
Lla

ma

0.8
0.9
1.0
1.1
1.2

Pr
ed

ict
/H

ar
dw

ar
e

Figure 7: Comparing the TrioSim-predicted and real-
hardware time when applying standard data parallelism on
P1. The average error of the experiment set is 7.39%.

experiment, we only count the time that at least one GPU is busy or
at least one data movement task is taking place. We do not consider
CPU overhead, because the main goal of TrioSim is to model large-
scale DNN training where GPUs are likely to be heavily utilized.

6 Validation
We present a series of experiment results to demonstrate the validity
of TrioSim, focusing on comparing the TrioSim-predicted and real-
hardware execution time.

SingleGPUvalidation. First, we validate the accuracy of TrioSim
for single GPU training. We use the single GPU trace when the
batch size is 128 to predict the single GPU time when the batch
size is 256. Our results in Figure 6 show that the normalized times
(predicted time/real hardware time) of all the models are close to
1, which indicates that TrioSim can accurately predict the perfor-
mance for both A40 and A100. The average error across all tested
models is 1.10% for A40 GPU and 3.25% for A100 GPU.

Data parallelism validation. Next, we validate if TrioSim can
correct model standard data parallelism in Pytorch on real hardware.
We use TrioSim to predict the performance of data parallelism
training and compare the results with the real hardware execution
time on P1. The results (see Figure 7), demonstrate that TrioSim
can accurately predict the performance of models training with

1531



TrioSim: A Lightweight Simulator for Large-Scale DNN Workloads on Multi-GPU Systems ISCA ’25, June 21–25, 2025, Tokyo, Japan

DN-121
DN-161

DN-169
DN-201

RN-18
RN-34

RN-50
RN-101

RN-152
VGG-11

VGG-13
VGG-16

VGG-19
BERT

GPT2 T5
Fla

n-T5
Lla

ma

0.95

1.00

1.05

1.10

1.15

Pr
ed

ict
/H

ar
dw

ar
e

P1 P2

Figure 8: Comparing the TrioSim-predicted and real-
hardware time when applying distributed data parallelism
on P1 and P2. The average errors of the experiment set for
P1 and P2 are 2.91% and 2.73%, respectively.

DN-121
DN-161

DN-169
DN-201

RN-18
RN-34

RN-50
RN-101

RN-152
VGG-11

VGG-13
VGG-16

VGG-19
BERT

GPT2 T5
Fla

n-T5
Lla

ma
0.7
0.8
0.9
1.0
1.1
1.2

Pr
ed

ict
/H

ar
dw

ar
e

P1 P2

Figure 9: Comparing the TrioSim-predicted and real-
hardware time when applying tensor parallelism on P1 and
P2. The average errors of the experiment set for P1 and P2
are 4.54% and 11.24%.

standard data parallelism. The average error across all models in
the experiment set is 7.39%.

Second, TrioSim simulates distributed data parallelism using
DistributedDataParallel from PyTorch on real hardware. We
simulate the training performance with distributed data parallelism
on P1 and P2. The predictions are more accurate than the stan-
dard data parallelism, with errors (see Figure 8) as low as 2.91%
and 2.73% on P1 and P2, respectively. TrioSim is better at predict-
ing distributed data parallelism, which is recommended over stan-
dard data parallelism because distributed data parallelism overlaps
NCCL AllReduce operation with backpropagation. However, the
prediction of both standard data parallelism and distributed data
parallelism are sufficiently accurate to satisfy academic research
purposes.

Tensor parallelism validation. TrioSim also simulates the
DNN training with tensor parallelism. We simulate the time for
tensor parallelism on P1 and P2, getting average errors (see Figure 9)
of 4.54% and 11.24%, respectively. The results demonstrate TrioSim’s
effectiveness in modeling the performance of workloads that apply
tensor parallelism.

Pipeline parallelism validation. We simulate pipeline par-
allelism for different DNNs on P2 with 2 A100 GPUs used and 4
A100 GPUs used, separately. During the simulation, we divide each
mini-batch into micro-batches with the number of micro-batches

(chunks) equal to 1, 2, and 4. Micro-batches are processed in parallel
in different pipeline stages.

We feed in TrioSim with a single GPU trace with a batch size of
128 (for Llama, we drop this to 16 to avoid out-of-memory issues
during real-hardware tracing). As the number of chunks increases,
the micro-batch size on the GPUs becomes smaller. This reduction
in micro-batch size can cause CPU scheduling overhead to become
significant, leading to longer total end-to-end execution times, con-
trary to the theoretical expectation that execution times should
decrease with more chunks. For instance, for DenseNet-169, the
times are roughly 1.4x for 4 chunks compared with 2 chunks on
P2. Therefore, these cases are not the main targets of TrioSim, as
indicated by bars with an orange triangle on the top in Figure 10
for DenseNet-169 and DenseNet-201 on the 2 A100 GPUs simula-
tion and for ResNet-18, ResNet-101, ResNet-152, DenseNet-169, and
DenseNet-201 on the 4 A100 GPUs simulation.

The results shown in Figure 10 suggest that TrioSim can also
handle the simulation for pipeline parallelism with reasonable accu-
racy. The average error for simulations with 1 chunk, 2 chunks, and
4 chunks on 2 A100 GPUs is 6.82%, 6.58%, and 15.10%, respectively,
while the average error for simulations with 1 chunk, 2 chunks, and
4 chunks on P2 simulation is 5.14%, 8.96%, and 8.18%, respectively.

New GPUs validation.We validate various parallelism strate-
gies on P3 to demonstrate TrioSim’s effectiveness on an 8-GPU
configuration. At the same time, to show that TrioSim can predict
performance for new GPUs and varying batch sizes, we first use
traces from single A40 and A100 GPUs with a batch size of 128—
following Li’s Model—to predict the performance on the 8 H100
system at batch size 256. For comparison, we also collect traces for
a batch size of 256 on a single H100 GPU and use it as input of
TrioSim to predict performance for the 8 H100 system.

Figure 11 shows TrioSim’s prediction errors of real hardware
time for models using distributed data parallelism, tensor paral-
lelism, and pipeline parallelism (with different chunk sizes) on P3.
Transformer models are excluded from the figures because collect-
ing traces on real hardware leads to out-of-memory errors and
incomplete executions, necessitating non-trivial code modifications
and debugging. For Case 1 (cross-GPU prediction), the average error
is 9.09% for data parallelism, 9.07% for tensor parallelism, and 5.65%,
16.28% for pipeline parallelism with 1, and 2 chunks, respectively.
For Case 2 (same-GPU prediction), the average error is 6.69% for
data parallelism, 9.09% for tensor parallelism, and 4.20%, 13.76% for
pipeline parallelism with 1, and 2 chunks, respectively. Although
cross-GPU modeling adds errors, the error remains relatively low.

Parallelism comparison. To demonstrate that TrioSim pro-
vides accurate relative comparisons between different configura-
tions, we experiment on P2 to compare the performance of data,
tensor, and pipeline parallelism across models, using a fixed total
batch size of 128 on 4 GPUs and a pipeline micro-batch size of 64.
The results (see Figure 12) demonstrate that TrioSim can always
predict the relative performance across parallelism. Both the actual
hardware results and TrioSim support that data parallelism is the
most efficient option when the total workload is constant. Tensor
parallelism generally does not perform well except on transform-
ers. Moreover, TrioSim accurately predicts for each model whether
tensor parallelism is more efficient than pipeline parallelism.

1532



ISCA ’25, June 21–25, 2025, Tokyo, Japan Li, et al.

DN-169 DN-201 RN-18 RN-101 RN-152 VGG-13 VGG-19 GPT2
2 A100 GPUs

0.6

0.8

1.0

1.2

Pr
ed

ict
/H

ar
dw

ar
e

1 Chunk 2 Chunks 4 Chunks

DN-169 DN-201 RN-18 RN-101 RN-152 VGG-13 VGG-19 GPT2
4 A100 GPUs

0.6

0.8

1.0

1.2

Pr
ed

ict
/H

ar
dw

ar
e

1 Chunk 2 Chunks 4 Chunks

Figure 10: Comparing the TrioSim-predicted and real-hardware time when applying pipeline parallelism on 2 A100 GPUs
and 4 A100 GPUs with different chunks. Other models are not shown because they require extension code modification to
support pipeline parallelism. The bar with an orange triangle on the top means an abnormal value contrary to the theoretical
expectation that execution times should decrease with more chunks. We do not address this particular case as they are not the
main target of TrioSim. The average errors of the experiment set for 2 A100 GPUs are 6.82%, 6.58%, and 15.10% for 1 chunk, 2
chunks, and 4 chunks, respectively. The average errors of the experiment set for 4 A100 GPUs are 5.14%, 8.96%, and 8.18% for 1
chunk, 2 chunks, and 4 chunks, respectively.

DN-121
DN-161

DN-169
DN-201

RN-18
RN-34

RN-50
RN-101

RN-152
VGG-11

VGG-13
VGG-16

VGG-19
0.6

0.8

1.0

1.2

Pr
ed

ict
/H

ar
dw

ar
e

Case 1: input (1xA40 & 1xA100, BS128), output (8xH100, BS256);

DDP Case 1
DDP Case 2

TP Case 1
TP Case 2

DN-169 DN-201 RN-18 RN-101 RN-152 VGG-13 VGG-19
0.6

0.7

0.8

0.9

1.0

Pr
ed

ict
/H

ar
dw

ar
e

Case 2: input (1xH100, BS256), output (8xH100, BS256)

PP 1 Chunk Case 1
PP 1 Chunk Case 2

PP 2 Chunks Case 1
PP 2 Chunks Case 2

Figure 11: Comparing the TrioSim-predicted and real-hardware time when applying distributed data (left), tensor (left), and
pipeline (right) parallelism with different chunk sizes on P3. Each group shows four bars: two bars for Case 1—use input traces
collected on single A40 and single A100 to predict the 8 H100 system; two bars for Case 2—use input traces collected on single
H100 to predict the 8 H100 system.

Communication and computation time offered by TrioSim.
TrioSim can provide a detailed timeline trace of the multi-GPU
trace extrapolator. Similarly, TrioSim can extract and output the
communication and computation time for each DNN model (see
Figure 13 for the breakdown of communication and computation
times on P1). The breakdown of times allows users to analyze the
impact of communication on total GPU time. The results indicate
that the communication time ratio in tensor parallel is higher than
in data parallel on P1. By evaluating the total computation and
communication times, users can make informed decisions about
which parallelism strategy to use and determine the optimal number
of GPUs for their multi-GPU systems.

TrioSim execution time. The simulation of TrioSim can be
completed within seconds. Figure 14 illustrates the simulator’s
execution time when modeling distributed data parallelism for P2.
The execution time is primarily influenced by the total number of
GPUs in the system, and the size of the trace files.

7 Case Studies
In this section, we perform two case studies to demonstrate how
TrioSim can easily evaluate novel designs.

7.1 Photonic-Connected Wafer-Scale GPUs
In prior experiments, we have utilized a packet-switching network
to connect all the GPUs. However, other innovative hardware net-
works can enhance transmission efficiency. We present a case study
that employs a photonic network to connect the GPUs in the system
to reduce communication overhead. We develop the photonic net-
work model for TrioSim to replace the standard packet-switching
network model. This case study demonstrates the capability and the
low difficulty of modeling a new, user-defined network in TrioSim.

Photonic interconnects. Photonic interconnects [15, 30, 36,
43] utilize light as the medium for data transmission. The high
frequency and broad usable frequency band of light signals enable
these optical links to offer high bandwidth and low latency while
maintaining energy-efficient information exchange channels.

1533



TrioSim: A Lightweight Simulator for Large-Scale DNN Workloads on Multi-GPU Systems ISCA ’25, June 21–25, 2025, Tokyo, Japan

DN-169 DN-201 RN-18 RN-101 RN-152 VGG-13 VGG-19 GPT2

20

100

500

Ti
m

e 
(m

s)

DDP Hardware
DDP Predict

TP Hardware
TP Predict

PP Hardware
PP Predict

Figure 12: Comparing data, tensor, and pipeline parallelism
on P2, with a fixed total batch size of 128 for 4 GPUs and a
pipeline micro-batch size of 64.

DN-12
1

DN-16
1

DN-16
9

DN-20
1

RN
-18

RN
-34

RN
-50

RN
-10

1
RN

-15
2

VG
G-11

VG
G-13

VG
G-16

VG
G-19BE

RT
GPT

2 T5
Fla

n-T
5

Lla
ma

0
20
40
60
80

100

Ti
m

e 
%

DDP Communication %
DDP Computation %

TP Communication %
TP Computation %

Figure 13: Communication and computation time ratio for
models training with tensor parallelism and distributed data
parallelism simulations on P1.

DN-121
DN-161

DN-169
DN-201

RN-18
RN-34

RN-50
RN-101

RN-152
VGG-11

VGG-13
VGG-16

VGG-19
BERT

GPT2 T5
Fla

n-T5
Lla

ma

102

103

Ti
m

e 
(m

s)

Figure 14: Simulator’s execution time in log scale when mod-
eling distributed data parallelism on P2.

A notable application of photonic interconnects on multi-GPU
systems is Lightmatter’s Passage [21]. Passage provides a photonic
interposer that connects multiple chiplets (e.g., GPUs, accelera-
tors, memory pool) on a wafer. Being a circuit-switching network,
Passage requires establishing logical links that occupy frequency
bands of the underlying fiber. Once the logical links are established,
each Passage connection can deliver high bandwidth and ultra-low
latency. Consequently, packets can be delivered to any node on the
wafer with nearly the same latency, regardless of physical distance.

Photonic network model implementation. TrioSim only
requires a network model to implement the Send and Deliver
functions that mark the start and end of a transfer, respectively.
While the Deliver function is straightforward and only involves

passing the data to the receiver by reference, the Send function is a
3-step process, including 1) establishing the link, 2) reserving buffer
space, and 3) moving data.

Upon sending data, we first check if there is already a link es-
tablished between the sender and receiver. If no link is available,
we spend some time (the latency is configurable) establishing the
link by scheduling a simulator event. Since the photonic port of a
GPU is limited, we destroy the unused links that have been idle
for the longest time if there is no port available. After establishing
the link, the sender waits until the destination has buffer space
available. Note that this process does not require polling, but the
Akita Simulator Engine used in TrioSim can support notifying the
sender when the buffer space is available. Finally, once we reserve
the buffer space, we can calculate the delivery time as the data size
divided by bandwidth, plus the link’s latency. We then schedule the
delivery event according to the calculated transfer time.

Configuring the hardware platform to use the new interconnect
is straightforward. A user would only need to instantiate the pho-
tonic interconnect class and call the PlugIn method to associate
the device port with the connection. No need to modify the device
code since the data transfer is independent of device logic.

Hardware configuration. Since Passage is designed for wafer-
scale systems, we model a wafer with 12 × 7 = 84 GPUs, with each
GPU equivalent to an NVIDIA A100 GPU. The number is consistent
with the reticles on Cerebras Wafer-Scale Engine design [31] and is
easily configurable. In our experiment, we configure the Passage to
provide a bandwidth of 484 GB/s across 8 links and set the latency
for establishing a link to 20 ms. For electrical and optical networks,
we use the mesh network on the wafer to form a ring to perform
AllReduce operations.

Results. The results (see Figure 15) indicate that at such a scale,
communication significantly impacts the execution time in the
electrical network system. For instance, in networks like VGG-19,
communication accounts for 92.21% of the total execution time,
demonstrating that relying solely on data parallelism training is
suboptimal for electrical network-based wafer-scale GPUs. In con-
trast, the optical network reduces communication time by nearly
half. However, this case study also reveals that merely adopting a
photonic network does not completely resolve scalability issues.
Further design of communication schemes is necessary to fully
leverage the capabilities of fiber-connected wafer-scale GPUs.

7.2 Heterogeneous Training with Hop
Heterogeneity among multiple worker nodes is a critical challenge
in distributed training tasks, which leads to performance bottle-
necks as faster workers must wait for slower ones during synchro-
nization phases. The impact of this issue is particularly profound
in decentralized training systems that rely on synchronous com-
munication methods like AllReduce, which are not designed with
consideration of heterogeneity. TrioSim’s flexibility makes it a good
fit for studying heterogeneous multi-GPU systems. Simulating such
systems with other similar tools [3, 41, 60] can be challenging due
to their limited capability of deviating from the traces collected.

In this case study, we repeat the experiments conducted in the
Hop [42] design. The Hop [42] protocol introduces a heterogeneity-
aware approach to decentralized training. Hop’s main idea is to

1534



ISCA ’25, June 21–25, 2025, Tokyo, Japan Li, et al.

DN-12
1

DN-16
1

DN-16
9

DN-20
1
RN-18

RN-34
RN-50

RN-10
1

RN-15
2

VGG-11

VGG-13

VGG-16

VGG-19BER
T
GPT

2 T5
Fla

n-T
5
Lla

ma
0

1000

2000

3000

4000

Ti
m

e 
(s

)

Photonic Communication
Photonic Computation

Electrical Communication
Electrical Computation

Figure 15: The performance of a wafer-scale GPUwith 12×7 =
84 chiplets connected with electrical and photonic intercon-
nects when training DNNs with data parallelism. Optical
networks can significantly reduce communication time. The
time for Llama in this figure is scaled down by a factor of 56.

use a queue-based synchronization mechanism, which intelligently
manages the iteration time differences between worker nodes. This
mechanism is implemented by update queues and token queues. Up-
date queues are dynamically sized based on the observed iteration
gaps, enabling efficient coordination without waiting for the slow-
est node. Meanwhile, token queues regulate the iteration gaps more
strictly to prevent excessive divergence among worker states. Hop
enhances decentralized training with several strategic features, in-
cluding backup workers, bounded staleness, and skipping iterations.
Backup workers are introduced to maintain productivity when pri-
mary workers become bottlenecks. Bounded staleness leverages the
flexibility of queue-based synchronization. Hop allows for a con-
trolled staleness in updates, exploiting the known benefits of stale
synchronous parallel models without compromising convergence.

Configuration.We implement the Hop protocol in TrioSim and
conduct extensive experiments to evaluate the impact of backup
workers on different network configurations. Our experimental
setup includes 8 A100 GPUs, with each simulation of VGG-11 run-
ning a batch size of 128, matching the workload size in Hop paper.
We model a heterogeneous environment by introducing a mecha-
nism that slows down GPU communication bandwidth by a factor
of random number between 1 and 10. The experiments are con-
ducted across two different types of communication graphs (see Fig-
ure 16: ring-based and double-ring). To explore the effectiveness
of backup workers, we introduce one backup worker in both the
ring-based and double-ring configurations, meaning that each node
could miss one update without impacting the overall progression.
This configuration demonstrates TrioSim’s capability of simulating
non-standard networks and asymmetrical GPU configurations.

Results.Our dataset consists of 8 groups, representing scenarios
with random slowdowns across 8 A100 GPUs. Each group corre-
sponds to the speedup achieved under different configurations:
the ring-based network with one backup worker versus without
a backup worker, and the double-ring network with one backup
worker versus without a backup worker. As shown in Figure 16, the
backup worker’s effect on performance greatly varies with different
slow-down ratios. The results demonstrate significant variations
in performance, which proves that backup workers enhance the

0

4

26

7 1

35

0

4

26

7 1

35

(a) Network

1 2 3 4 5 6 7 8

0.8
1.0
1.2
1.4
1.6

Sp
ee

d 
Up

Ring-Based Double-Ring

(b) Speedup

Figure 16: (a) Ring-based graph (top): GPUs are connected in a
circular topology with bidirectional edges, and an additional
connection is established between each node and its most
distant node. Double-ring graph (bottom): two ring-based
graphs are interconnected node-to-node. (b) Each data group
(8 groups in total) on the x-axis represents a random slow-
down scenario in an 8 A100 system. The y-axis represents the
speedup achieved with one backup worker in heterogeneous
multi-GPU systems connected with ring-based and double-
ring networks.

robustness and efficiency of decentralized training systems across
diverse network environments as in the paper [42].

Our implementation of Hop within TrioSim showcases the simu-
lator’s robust flexibility and capability to adapt to different network
conditions and training configurations. TrioSim’s architecture al-
lows users to integrate various synchronization strategies, includ-
ing the innovative approaches proposed by Hop. This adaptability
makes it an ideal platform for exploring and validating cutting-edge
distributed training protocols like Hop.

8 Discussion
8.1 Is TrioSim Sufficiently Accurate
TrioSim is a tool designed to quickly model and predict execution
times of large-scale DNN training, which may vary by several or-
ders of magnitude. Yet, TrioSim provides highly useful estimations
as errors fall within a reasonable range. TrioSim generally demon-
strates an error of less than 20%, with many instances showing
errors limited to less than 10% depending on the complexity of the
workload and system. Such error rates are generally considered
adequate for future academic research.

8.2 Error Sources
TrioSim is designed to provide efficient and accurate predictions
for large-scale DNN training, but its accuracy can be influenced by
certain error sources and limitations in its modeling assumptions.
These issues primarily stem from the linear regression-based per-
formance model, network model, and multi-GPU trace extrapolator.

Linear regression-based performance model. The linear
regression-based performance model predicts GPU execution times
by extrapolating single-GPU traces and scaling batch sizes based on
the parallelism strategy (e.g., data, tensor, or pipeline parallelism).
This approach works well for large-scale workloads where GPUs

1535



TrioSim: A Lightweight Simulator for Large-Scale DNN Workloads on Multi-GPU Systems ISCA ’25, June 21–25, 2025, Tokyo, Japan

are fully utilized, but it encounters challenges with smaller batch
sizes or lightweight models. Under these conditions, the GPUs may
not exert enough pressure on computational or memory resources,
leading to inaccuracies in predicted performance. To address this
limitation, TrioSim allows the integration of alternative compute
models, such as NeuSight [32], which can better handle underuti-
lized workloads, offering users the flexibility to refine predictions
based on specific scenarios.

Network model. The network model simulates inter-GPU com-
munication and memory movement using Little’s law [39], esti-
mating transfer times based on bandwidth and latency. However,
TrioSim does not model communication protocols or account for
nuanced differences caused by varying data transfer unit sizes or
handling multiple simultaneous data streams, which could intro-
duce minor inaccuracies. These limitations make accurately sim-
ulating fine-grained network behaviors challenging. Despite this,
TrioSim’s high prediction accuracy demonstrates that it effectively
captures the most critical factors, such as latency and bandwidth
while excluding less impactful details.

Trace extrapolation. The multi-GPU trace extrapolator ex-
pands single-GPU traces to simulate multi-GPU execution, intro-
ducing potential errors when replicating the process for parallelism
strategies. For example, in pipeline parallelism, the simulator au-
tomatically assigns layers to GPUs to balance workloads, which
may not align with the actual behavior of real-world systems. Dis-
crepancies can arise if interdependencies between layers or com-
munication bottlenecks are not accurately represented, potentially
leading to deviations between simulated and actual performance.

CPU overhead. TrioSim only considers GPU compute and data
movement (including CPU to GPU data movement). We observe
that, when training small workloads, the CPU can be the perfor-
mance bottleneck [20] (as seen in Figure 10). However, small work-
loads are not the main goal of TrioSim. When training large work-
loads, the data movement and layer computing dominate the exe-
cution time. Estimating CPU overhead requires more sophisticated
CPU performance models, which requires dedicated future research.

8.3 How TrioSim Should Be Used
TrioSim is primarily designed for system-level research, focusing
on exploring the performance of large-scale DNN workloads on
multi-GPU systems. Rather than modeling fine-grained architec-
tural changes, TrioSim enables researchers to study high-level sys-
tem behaviors, such as the impact of parallelization strategies, net-
work topologies, and scaling configurations. For example, given an
LLM and a specific GPU interconnect topology, users can evaluate
different parallelism strategies (data, tensor, or pipeline parallelism)
to determine the most efficient configuration. Because TrioSim
can accurately model multi-GPU execution using just one GPU
trace, this single-trace capability—allows for unlimited parameter
changes—is well-suited for this purpose.

Although TrioSim does not support value-based simulation or
fine-grained architectural modeling, it can be combined with low-
level simulators for architecture-level investigations. If a hardware
modification (e.g., a new TensorCore design or atomic operation
optimization) impacts specific DNN layers, a viable approach is to
first simulate those layers using a cycle-accurate simulator (such

as gem5 [62], Accel-Sim [28], or MGPUSim [67]) to obtain updated
execution time estimates. These adjusted execution times can then
be fed into TrioSim’s trace-driven extrapolation framework, allow-
ing users to observe the impact of architectural changes at full
scale across multi-GPU configurations and end-to-end workloads.
This hybrid workflow enables large-scale performance evaluation,
which would be infeasible using cycle-accurate simulators alone
due to their high computational cost.

8.4 Limitations
The design of TrioSimmakes key trade-offs to enable efficient evalu-
ation of regular DNN workloads with limited computing resources.
As a result, it has several limitations: (1) TrioSim does not support
functional emulation and therefore cannot model value-dependent
or highly irregular workloads. (2) Fine-grained hardware modi-
fications cannot be directly evaluated because TrioSim is not an
architecture or cycle-level simulator. (3) TrioSim does not collect
kernel traces related to communication. Instead, TrioSim recreates
the behavior of the open-sourced NCCL implementation as part
of the extrapolation process. If NCCL changes in the future, a user
may need to update TrioSim to adapt. (4) Limited by Li’s Model [34],
TrioSim assumes high GPU utilization, making it less accurate for
the cases where the CPU is the bottleneck or the kernels are small.
(5) The highly abstract network model ignores protocol-level ef-
fects and low-level communication behaviors. And (6) TrioSim has
only been validated against CNNs and Transformers. We leave
supporting other types of workload (e.g., reinforcement learning,
Graph Neural Network) as future work. Despite these limitations,
the high accuracy observed across diverse workloads demonstrates
that TrioSim can provide trustworthy insights and reliable guidance
for designing large-scale DNN systems.

9 Conclusions
This paper introduces TrioSim, a trace-driven simulator that enables
simulating large-scale DNN workloads on multi-GPU systems with
high accuracy and short simulation time. The capability of quickly
modeling the performance of such large-scale systems is becoming
increasingly critical amid the extreme popularity of LLMs. TrioSim
only requires single GPU traces to serve as input, significantly
reducing the hardware requirement to perform research in the
domain. Combining high-level performance models and network
models allows TrioSim to simulate the performance of a wide range
of DNNs, parallelisms, and inter-GPU networks. TrioSim represents
our continuous effort in finding a mid-ground between detailed sim-
ulations and low-level simulations, balancing simulation accuracy
and performance.

Acknowledgments
We thank the anonymous reviewers for their detailed and construc-
tive feedback. This material is based upon work supported by the
US National Science Foundation (NSF) awards (#2402804, #2402805).
Part of this work was conducted under the Laboratory Directed
Research and Development Program at Thomas Jefferson National
Accelerator Facility for the U.S. Department of Energy.

1536



ISCA ’25, June 21–25, 2025, Tokyo, Japan Li, et al.

References
[1] Cesar Avalos Baddouh, Mahmoud Khairy, Roland N Green, Mathias Payer, and

Timothy G Rogers. 2021. Principal Kernel Analysis: A Tractable Methodology to
Simulate Scaled GPU Workloads. In MICRO-54: 54th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture. 724–737.

[2] Ammar Ahmad Awan, Hari Subramoni, and Dhabaleswar K Panda. 2017. An
in-depth performance characterization of CPU-and GPU-based DNN training on
modern architectures. In Proceedings of the Machine Learning on HPC Environ-
ments. 1–8.

[3] Jehyeon Bang, Yujeong Choi, Myeongwoo Kim, Yongdeok Kim, and Minsoo
Rhu. 2023. vtrain: A simulation framework for evaluating cost-effective and
compute-optimal large language model training. arXiv preprint arXiv:2312.12391
(2023).

[4] Yuhui Bao, Yifan Sun, Zlatan Feric, Michael Tian Shen, Micah Weston, José L
Abellán, Trinayan Baruah, John Kim, Ajay Joshi, and David Kaeli. 2022. NaviSim:
AHighly Accurate GPU Simulator for AMDRDNAGPUs. In The 31st International
Conference on Parallel Architectures and Compilation Techniques (PACT).

[5] BlackSamorez. 2024. Tensor Parallel. Retrieved July 20, 2024 from https://github.
com/BlackSamorez/tensor_parallel

[6] Eric Chung, Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Adrian
Caulfield, Todd Massengill, Ming Liu, Daniel Lo, Shlomi Alkalay, Michael Hasel-
man, et al. 2018. Serving dnns in real time at datacenter scale with project
brainwave. iEEE Micro 38, 2 (2018), 8–20.

[7] HyungWon Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus,
Yunxuan Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. 2024.
Scaling instruction-finetuned language models. Journal of Machine Learning
Research 25, 70 (2024), 1–53.

[8] Jinku Cui, Qidong Zhao, Yueming Hao, and Xu Liu. 2024. DrPy: Pinpointing
Inefficient Memory Usage in Multi-Layer Python Applications. In 2024 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO). IEEE, 245–
257.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[10] Aditya Dhakal, Sameer G Kulkarni, and KK Ramakrishnan. 2024. D-STACK:
High Throughput DNN Inference by Effective Multiplexing and Spatio-Temporal
Scheduling of GPUs. IEEE Transactions on Cloud Computing (2024).

[11] Weiguang Ding, RuoyanWang, Fei Mao, and Graham Taylor. 2014. Theano-based
large-scale visual recognition with multiple gpus. arXiv preprint arXiv:1412.2302
(2014).

[12] Lukasz Drzewiecki and Monika Antoniak-Lewandowska. 2007. Flow Simulator-a
flow-based network simulator. In EUROCON 2007-The International Conference
on" Computer as a Tool". IEEE, 2132–2136.

[13] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan,
et al. 2024. The llama 3 herd of models. arXiv preprint arXiv:2407.21783 (2024).

[14] Yusuke Fujii, Takuya Azumi, Nobuhiko Nishio, Shinpei Kato, and Masato Edahiro.
2013. Data transfer matters for GPU computing. In 2013 International Conference
on Parallel and Distributed Systems. IEEE, 275–282.

[15] Michael Georgas, Jonathan Leu, Benjamin Moss, Chen Sun, and Vladimir Sto-
janović. 2011. Addressing link-level design tradeoffs for integrated photonic
interconnects. In 2011 IEEE Custom Integrated Circuits Conference (CICC). IEEE,
1–8.

[16] Thomas J Giuli and Mary Baker. 2002. Narses: A scalable flow-based network
simulator. arXiv preprint cs/0211024 (2002).

[17] Chris Gregg and Kim Hazelwood. 2011. Where is the data? Why you cannot
debate CPU vs. GPU performance without the answer. In (IEEE ISPASS) IEEE
International Symposium on Performance Analysis of Systems and Software. IEEE,
134–144.

[18] Udit Gupta, Carole-Jean Wu, Xiaodong Wang, Maxim Naumov, Brandon Reagen,
David Brooks, Bradford Cottel, Kim Hazelwood, Mark Hempstead, Bill Jia, et al.
2020. The architectural implications of facebook’s dnn-based personalized recom-
mendation. In 2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 488–501.

[19] Yueming Hao, Nikhil Jain, Rob Van der Wijngaart, Nirmal Saxena, Yuanbo Fan,
and Xu Liu. 2023. DrGPU: A Top-Down Profiler for GPU Applications. In Proceed-
ings of the 2023 ACM/SPEC International Conference on Performance Engineering.
43–53.

[20] Yueming Hao, Xu Zhao, Bin Bao, David Berard, Will Constable, Adnan Aziz,
and Xu Liu. 2023. TorchBench: Benchmarking PyTorch with High API Surface
Coverage. arXiv:2304.14226 [cs.LG]

[21] Nicholas C Harris, Darius Bunandar, Ajay Joshi, Ayon Basumallik, and Robert
Turner. 2022. Passage: A wafer-scale programmable photonic communication
substrate. In 2022 IEEE Hot Chips 34 Symposium (HCS). IEEE Computer Society,
1–26.

[22] Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chintala, Utku Diril, Dmytro
Dzhulgakov, Mohamed Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro, et al. 2018.

Applied machine learning at facebook: A datacenter infrastructure perspective.
In 2018 IEEE International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 620–629.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[24] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.
2017. Densely connected convolutional networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 4700–4708.

[25] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia
Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. 2019. Gpipe:
Efficient training of giant neural networks using pipeline parallelism. Advances
in neural information processing systems 32 (2019).

[26] Nan Jiang, George Michelogiannakis, Daniel Becker, Brian Towles, and William J
Dally. 2010. Booksim 2.0 user’s guide. Standford University (2010), q1.

[27] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. 2017.
In-datacenter performance analysis of a tensor processing unit. In Proceedings of
the 44th annual international symposium on computer architecture. 1–12.

[28] Mahmoud Khairy, Zhesheng Shen, Tor M Aamodt, and Timothy G Rogers. 2020.
Accel-Sim: An extensible simulation framework for validated GPU modeling. In
2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA). IEEE, 473–486.

[29] Heehoon Kim, Hyoungwook Nam, Wookeun Jung, and Jaejin Lee. 2017. Per-
formance analysis of CNN frameworks for GPUs. In 2017 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS). IEEE,
55–64.

[30] Ashok V Krishnamoorthy, Ron Ho, Xuezhe Zheng, Herb Schwetman, Jon Lexau,
Pranay Koka, GuoLiang Li, Ivan Shubin, and John E Cunningham. 2009. Computer
systems based on silicon photonic interconnects. Proc. IEEE 97, 7 (2009), 1337–
1361.

[31] Mandy La and AndrewChien. 2020. Cerebras Systems: Journey to theWafer-Scale
Engine. University of Chicago, Tech. Rep (2020).

[32] Seonho Lee, Amar Phanishayee, and Divya Mahajan. 2024. Data-driven Fore-
casting of Deep Learning Performance on GPUs. arXiv preprint arXiv:2407.13853
(2024).

[33] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li,
Adam Paszke, Jeff Smith, Brian Vaughan, Pritam Damania, et al. 2020. Pytorch
distributed: Experiences on accelerating data parallel training. arXiv preprint
arXiv:2006.15704 (2020).

[34] Ying Li, Yifan Sun, and Adwait Jog. 2023. Path Forward Beyond Simulators: Fast
and Accurate GPU Execution Time Prediction for DNNWorkloads. In Proceedings
of the 56th Annual IEEE/ACM International Symposium on Microarchitecture. 380–
394.

[35] Ying Li, Yifan Sun, and Adwait Jog. 2023. A Regression-based Model for End-
to-End Latency Prediction for DNN Execution on GPUs. In the Proceedings of
International Symposium on Performance Analysis of Systems and Software (IS-
PASS), Raleigh, NC. 343–345.

[36] Yuan Li, Ke Wang, Hao Zheng, Ahmed Louri, and Avinash Karanth. 2022. Ascend:
A scalable and energy-efficient deep neural network accelerator with photonic
interconnects. IEEE Transactions on Circuits and Systems I: Regular Papers 69, 7
(2022), 2730–2741.

[37] Shao-Fu Lin, Yi-Jung Chen, Hsiang-Yun Cheng, and Chia-Lin Yang. 2023. Tensor
Movement Orchestration in Multi-GPU Training Systems. In 2023 IEEE Inter-
national Symposium on High-Performance Computer Architecture (HPCA). IEEE,
1140–1152.

[38] Zhongyi Lin, Louis Feng, Ehsan KArdestani, Jaewon Lee, John Lundell, Changkyu
Kim, Arun Kejariwal, and John D Owens. 2022. Building a performance model
for deep learning recommendation model training on gpus. In 2022 IEEE 29th
International Conference on High Performance Computing, Data, and Analytics
(HiPC). IEEE, 48–58.

[39] John DC Little and Stephen C Graves. 2008. Little’s law. Building intuition:
insights from basic operations management models and principles (2008), 81–100.

[40] Changxi Liu, Yifan Sun, and Trevor E Carlson. 2023. Photon: A fine-grained
sampled simulation methodology for GPU workloads. In Proceedings of the 56th
Annual IEEE/ACM International Symposium on Microarchitecture. 1227–1241.

[41] Guandong Lu, Runzhe Chen, Yakai Wang, Yangjie Zhou, Rui Zhang, Zheng
Hu, Yanming Miao, Zhifang Cai, Li Li, Jingwen Leng, et al. 2023. DistSim: A
performance model of large-scale hybrid distributed DNN training. In Proceedings
of the 20th ACM International Conference on Computing Frontiers. 112–122.

[42] Qinyi Luo, Jinkun Lin, Youwei Zhuo, and Xuehai Qian. 2019. Hop: Heterogeneity-
aware decentralized training. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems. 893–907.

[43] Christopher Monroe, Robert Raussendorf, Alex Ruthven, Kenneth R Brown, Peter
Maunz, L-M Duan, and Jungsang Kim. 2014. Large-scale modular quantum-
computer architecture with atomic memory and photonic interconnects. Physical
Review A 89, 2 (2014), 022317.

1537

https://github.com/BlackSamorez/tensor_parallel
https://github.com/BlackSamorez/tensor_parallel
https://arxiv.org/abs/2304.14226


TrioSim: A Lightweight Simulator for Large-Scale DNN Workloads on Multi-GPU Systems ISCA ’25, June 21–25, 2025, Tokyo, Japan

[44] Ali Mosallaei, Katherine Isaacs, and Yifan Sun. 2024. Looking into the Black Box:
Monitoring Computer Architecture Simulations in Real-Time with AkitaRTM. In
The 57nd IEEE/ACM International Symposium on Microarchitecture.

[45] Mahmood Naderan-Tahan, Hossein SeyyedAghaei, and Lieven Eeckhout. 2023.
Sieve: Stratified GPU-Compute Workload Sampling. In 2023 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS). IEEE,
224–234.

[46] Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley,
Mostofa Patwary, Vijay Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti,
Julie Bernauer, Bryan Catanzaro, et al. 2021. Efficient large-scale language model
training on gpu clusters using megatron-lm. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis.
1–15.

[47] Cristobal A Navarro, Nancy Hitschfeld-Kahler, and Luis Mateu. 2014. A survey
on parallel computing and its applications in data-parallel problems using GPU
architectures. Communications in Computational Physics 15, 2 (2014), 285–329.

[48] NVIDIA. 2024. NCCL Tests. Retrieved July 20, 2024 from https://github.com/
NVIDIA/nccl-tests

[49] NVIDIA Corporation. 2018. NVSwitch Technical Overview. Retrieved July 25, 2024
from https://images.nvidia.com/content/pdf/nvswitch-technical-overview.pdf

[50] NVIDIA Corporation. 2024. NVIDIA Collective Communications Library (NCCL).
Retrieved November 15, 2024 from https://developer.nvidia.com/nccl

[51] NVIDIA Corporation. 2024. NVIDIA Nsight Compute. Retrieved November 15,
2024 from https://developer.nvidia.com/nsight-compute

[52] NVIDIA Corporation. 2024. NVIDIA NVLink. Retrieved July 18, 2024 from
https://www.nvidia.com/en-us/data-center/nvlink/

[53] John D Owens, Mike Houston, David Luebke, Simon Green, John E Stone, and
James C Phillips. 2008. GPU computing. Proc. IEEE 96, 5 (2008), 879–899.

[54] Saptadeep Pal, Eiman Ebrahimi, Arslan Zulfiqar, Yaosheng Fu, Victor Zhang,
Szymon Migacz, David Nellans, and Puneet Gupta. 2019. Optimizing multi-
GPU parallelization strategies for deep learning training. Ieee Micro 39, 5 (2019),
91–101.

[55] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

[56] PCI-SIG. 2024. PCI Express Base Specification. Retrieved July 18, 2024 from
https://pcisig.com/specifications

[57] PyTorch Contributors. 2024. Distributed Pipelining. Retrieved July 27, 2024 from
https://pytorch.org/docs/main/distributed.pipelining.html

[58] Alec Radford, JeffreyWu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. 2019. Language models are unsupervised multitask learners. OpenAI blog
1, 8 (2019), 9.

[59] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text transformer. Journal of machine
learning research 21, 140 (2020), 1–67.

[60] Saeed Rashidi, Srinivas Sridharan, Sudarshan Srinivasan, and Tushar Krishna.
2020. Astra-sim: Enabling sw/hw co-design exploration for distributed dl training
platforms. In 2020 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS). IEEE, 81–92.

[61] Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase,
Shuangyan Yang, Minjia Zhang, Dong Li, and Yuxiong He. 2021. {Zero-offload}:
Democratizing {billion-scale} model training. In 2021 USENIX Annual Technical
Conference (USENIX ATC 21). 551–564.

[62] Kyle Roarty and Matthew D Sinclair. 2020. Modeling modern gpu applications in
gem5. In gem5 Users Workshop.

[63] Christopher J Rossbach, Yuan Yu, Jon Currey, Jean-Philippe Martin, and Dennis
Fetterly. 2013. Dandelion: a compiler and runtime for heterogeneous systems. In
Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles.
49–68.

[64] Hossein SeyyedAghaei, Mahmood Naderan-Tahan, and Lieven Eeckhout. 2024.
GPU Scale-Model Simulation. In 2024 IEEE International Symposium on High-
Performance Computer Architecture (HPCA). IEEE, 1125–1140.

[65] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper,
and Bryan Catanzaro. 2019. Megatron-lm: Training multi-billion parameter
language models using model parallelism. arXiv preprint arXiv:1909.08053 (2019).

[66] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[67] Yifan Sun, Trinayan Baruah, Saiful A. Mojumder, Shi Dong, Xiang Gong, Shane
Treadway, Yuhui Bao, Spencer Hance, Carter McCardwell, Vincent Zhao, et al.
2019. MGPUSim: Enabling Multi-GPU Performance Modeling and Optimization.
In 46th International Symposium on Computer Architecture.

[68] Yifan Sun, Yixuan Zhang, Ali Mosallaei, Michael D Shah, Cody Dunne, and David
Kaeli. 2021. Daisen: A Framework for Visualizing Detailed GPU Execution. In
Computer Graphics Forum, Vol. 40. 239–250.

[69] Alexey Svyatkovskiy, Julian Kates-Harbeck, and William Tang. 2017. Training
distributed deep recurrent neural networks with mixed precision on GPU clusters.

In Proceedings of the Machine Learning on HPC Environments. 1–8.
[70] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne

Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971 (2023).

[71] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, et al. 2023. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288 (2023).

[72] Rafael Ubal, Byunghyun Jang, Perhaad Mistry, Dana Schaa, and David Kaeli.
2012. Multi2Sim: A simulation framework for CPU-GPU computing. In Proceed-
ings of the 21st international conference on Parallel architectures and compilation
techniques. 335–344.

[73] ThomasWolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al.
2020. Transformers: State-of-the-art natural language processing. In Proceedings
of the 2020 conference on empirical methods in natural language processing: system
demonstrations. 38–45.

[74] William Won, Taekyung Heo, Saeed Rashidi, Srinivas Sridharan, Sudarshan
Srinivasan, and Tushar Krishna. 2023. Astra-sim2. 0: Modeling hierarchical
networks and disaggregated systems for large-model training at scale. In 2023
IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS). IEEE, 283–294.

[75] Eric P Xing, Qirong Ho, Wei Dai, Jin-Kyu Kim, Jinliang Wei, Seunghak Lee, Xun
Zheng, Pengtao Xie, Abhimanu Kumar, and Yaoliang Yu. 2015. Petuum: A new
platform for distributed machine learning on big data. In Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
1335–1344.

[76] Yongkang Zhang, Haoxuan Yu, Chenxia Han, Cheng Wang, Baotong Lu, Yang
Li, Xiaowen Chu, and Huaicheng Li. 2024. Missile: Fine-Grained, Hardware-
Level GPU Resource Isolation for Multi-Tenant DNN Inference. arXiv preprint
arXiv:2407.13996 (2024).

[77] Keren Zhou, Yueming Hao, John Mellor-Crummey, Xiaozhu Meng, and Xu Liu.
2020. GVProf: A value profiler for GPU-based clusters. In SC20: International
Conference for High Performance Computing, Networking, Storage and Analysis.
IEEE, 1–16.

[78] Keren Zhou, Yueming Hao, John Mellor-Crummey, Xiaozhu Meng, and Xu Liu.
2022. ValueExpert: Exploring value patterns in GPU-Accelerated applications. In
Proceedings of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems. 171–185.

1538

https://github.com/NVIDIA/nccl-tests
https://github.com/NVIDIA/nccl-tests
https://images.nvidia.com/content/pdf/nvswitch-technical-overview.pdf
https://developer.nvidia.com/nccl
https://developer.nvidia.com/nsight-compute
https://www.nvidia.com/en-us/data-center/nvlink/
https://pcisig.com/specifications
https://pytorch.org/docs/main/distributed.pipelining.html

	Abstract
	1 Introduction
	2 Background
	2.1 DNN Training on Multi-GPU Platforms

	3 Related Work
	4 TrioSim
	4.1 Overview
	4.2 Tracer
	4.3 Multi-GPU Trace Extrapolator
	4.4 Operator Performance Model
	4.5 Network Modeling

	5 Experiment Methodology
	6 Validation
	7 Case Studies
	7.1 Photonic-Connected Wafer-Scale GPUs
	7.2 Heterogeneous Training with Hop

	8 Discussion
	8.1 Is TrioSim Sufficiently Accurate
	8.2 Error Sources
	8.3 How TrioSim Should Be Used
	8.4 Limitations

	9 Conclusions
	Acknowledgments
	References

